You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

227 lines
8.5 KiB
Python

11 months ago
# -*- coding: utf-8 -*-
import sys
11 months ago
import os
import uuid
from datetime import datetime
import httpx
from fastapi import FastAPI, File, UploadFile, Form, HTTPException, Request, status
11 months ago
import cv2
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.outputs import OutputKeys
import numpy as np
from starlette.staticfiles import StaticFiles
from starlette.templating import Jinja2Templates
app = FastAPI()
model_paths = {
"universal": {'path': 'damo/cv_unet_universal-matting', 'task': Tasks.universal_matting},
"people": {'path': 'damo/cv_unet_image-matting', 'task': Tasks.portrait_matting},
}
default_model = list(model_paths.keys())[0]
default_model_info = model_paths[default_model]
loaded_models = {default_model: pipeline(default_model_info['task'], model=default_model_info['path'])}
11 months ago
UPLOAD_FOLDER = "./upload"
OUTPUT_FOLDER = "./output"
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(OUTPUT_FOLDER, exist_ok=True)
11 months ago
class ModelLoader:
def __init__(self):
self.loaded_models = {default_model: loaded_models[default_model]}
def load_model(self, model_name):
if model_name not in self.loaded_models:
model_info = model_paths[model_name]
if not model_info:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid model selection")
11 months ago
model_path = model_info['path']
task_group = model_info['task']
self.loaded_models[model_name] = pipeline(task_group, model=model_path)
return self.loaded_models[model_name]
model_loader = ModelLoader()
def get_filename():
filename = uuid.uuid4()
original_image_filename = f"original_{filename}.png"
image_filename = f"image_{filename}.png"
mask_filename = f"mask_{filename}.png"
return original_image_filename, image_filename, mask_filename
# remove excess transparent background and crop the image
def crop_image_by_alpha_channel(input_image: np.ndarray | str, output_path: str):
img_array = cv2.imread(input_image, cv2.IMREAD_UNCHANGED) if isinstance(input_image, str) else input_image
if img_array.shape[2] != 4:
raise ValueError("Input image must have an alpha channel")
alpha_channel = img_array[:, :, 3]
bbox = cv2.boundingRect(alpha_channel)
x, y, w, h = bbox
cropped_img_array = img_array[y:y + h, x:x + w]
cv2.imwrite(output_path, cropped_img_array)
return output_path
11 months ago
def process_image(image_bytes: bytes):
img = cv2.imdecode(np.frombuffer(image_bytes, np.uint8), cv2.IMREAD_UNCHANGED)
final_img = convert_image_to_white_background(image=img)
if final_img is None:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid image")
return final_img
11 months ago
def convert_image_to_white_background(image_path: str = None, image: np.ndarray | None = None):
try:
if image_path is not None:
img = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
elif image is not None:
img = image
else:
raise ValueError("Either image_path or image must be provided.")
11 months ago
if img.shape[2] == 4:
alpha_channel = img[:, :, 3]
rgb_channels = img[:, :, :3]
11 months ago
alpha_channel_3d = alpha_channel[:, :, np.newaxis] / 255.0
alpha_channel_3d = np.repeat(alpha_channel_3d, 3, axis=2)
11 months ago
white_background_image = np.ones_like(rgb_channels, dtype=np.uint8) * 255
11 months ago
foreground = cv2.multiply(rgb_channels, alpha_channel_3d, dtype=cv2.CV_8UC3)
background = cv2.multiply(white_background_image, 1 - alpha_channel_3d, dtype=cv2.CV_8UC3)
11 months ago
final_img = cv2.add(foreground, background)
else:
final_img = img
return final_img
except Exception as e:
print(f'Error: {e}')
return None
11 months ago
@app.post("/switch_model/{new_model}")
async def switch_model(new_model: str):
if new_model not in model_paths:
return {"content": "Invalid model selection"}, status.HTTP_400_BAD_REQUEST
model_info = model_paths[new_model]
11 months ago
loaded_models[new_model] = pipeline(model_info['task'], model=model_info['path'])
model_loader.loaded_models = loaded_models
return {"content": f"Switched to model: {new_model}"}, status.HTTP_200_OK
@app.post("/matting")
async def matting(image: UploadFile = File(...), model: str = Form(default=default_model, alias="model")):
try:
image_bytes = await image.read()
img = cv2.imdecode(np.frombuffer(image_bytes, np.uint8), cv2.IMREAD_UNCHANGED)
if model not in model_paths:
return {"content": "Invalid model selection"}, status.HTTP_400_BAD_REQUEST
selected_model = model_loader.load_model(model)
original_image_filename, image_filename, mask_filename = get_filename()
cv2.imwrite(os.path.join(UPLOAD_FOLDER, original_image_filename), img)
final_img = convert_image_to_white_background(image=img)
if final_img is None:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid image")
result = selected_model(final_img)
cv2.imwrite(os.path.join(OUTPUT_FOLDER, image_filename), result[OutputKeys.OUTPUT_IMG])
cv2.imwrite(os.path.join(OUTPUT_FOLDER, mask_filename), result[OutputKeys.OUTPUT_IMG][:, :, 3])
response_data = {
"code": 0,
"result_image_url": f"/output/{image_filename}",
"mask_image_url": f"/output/{mask_filename}",
"original_image_size": {"width": img.shape[1], "height": img.shape[0]},
"generation_time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
}
return response_data
except HTTPException as e:
return {"error": str(e)}, e.status_code
except Exception as e:
return {"error": str(e)}, status.HTTP_500_INTERNAL_SERVER_ERROR
11 months ago
@app.post("/matting/url")
async def matting_url(request: Request, model: str = Form(default=default_model, alias="model")):
try:
json_data = await request.json()
image_url = json_data.get("image_url")
except Exception as e:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=f"Error parsing JSON data: {str(e)}")
11 months ago
if not image_url:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Image URL is required")
11 months ago
11 months ago
try:
async with httpx.AsyncClient() as client:
response = await client.get(image_url)
response.raise_for_status()
img_array = np.frombuffer(response.content, dtype=np.uint8)
img = cv2.imdecode(img_array, cv2.IMREAD_UNCHANGED)
except httpx.RequestError as e:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=f"Failed to fetch image from URL: {str(e)}")
11 months ago
if model not in model_paths:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid model selection")
11 months ago
selected_model = model_loader.load_model(model)
original_image_filename, image_filename, mask_filename = get_filename()
11 months ago
cv2.imwrite(os.path.join(UPLOAD_FOLDER, original_image_filename), img)
final_img = convert_image_to_white_background(image=img)
if final_img is None:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid image")
result = selected_model(final_img)
11 months ago
11 months ago
cv2.imwrite(os.path.join(OUTPUT_FOLDER, image_filename), result[OutputKeys.OUTPUT_IMG])
cv2.imwrite(os.path.join(OUTPUT_FOLDER, mask_filename), result[OutputKeys.OUTPUT_IMG][:, :, 3])
11 months ago
11 months ago
response_data = {
"code": 0,
11 months ago
"result_image_url": f"/output/{image_filename}",
"mask_image_url": f"/output/{mask_filename}",
"original_image_size": {"width": img.shape[1], "height": img.shape[0]},
"generation_time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
}
11 months ago
11 months ago
return response_data
11 months ago
templates = Jinja2Templates(directory="web")
11 months ago
app.mount("/static", StaticFiles(directory="./web/static"), name="static")
app.mount("/output", StaticFiles(directory="./output"), name="output")
app.mount("/upload", StaticFiles(directory="./upload"), name="upload")
11 months ago
@app.get("/")
async def read_index(request: Request):
return templates.TemplateResponse(
"index.html", {
"request": request,
"default_model": default_model,
"available_models": list(model_paths.keys())
})
11 months ago
if __name__ == "__main__":
import uvicorn
11 months ago
default_bind_host = "0.0.0.0" if sys.platform != "win32" else "127.0.0.1"
uvicorn.run(app, host=default_bind_host, port=8000)