main
ihmily 11 months ago
parent f117352b3e
commit c53ad69b39

@ -0,0 +1,35 @@
## Imgae matting
Here are a few effects
![image-20240104235235787](C:\Users\96153\AppData\Roaming\Typora\typora-user-images\image-20240104235235787.png)
![image-20240104235305391](C:\Users\96153\AppData\Roaming\Typora\typora-user-images\image-20240104235305391.png)
 
## How to Run
Firstly, you need to download the project code and install the required dependencies
```
git clone https://github.com/ihmily/image-matting.git
cd image-matting
pip install -r requirements.txt
```
Next, you can use the following command to run the web interface
```
python app.py
```
Finally, you can visit http://127.0.0.1:8000
 
## References
[https://modelscope.cn/models/damo/cv_unet_universal-matting/summary](https://modelscope.cn/models/damo/cv_unet_universal-matting/summary)
[https://modelscope.cn/models/damo/cv_unet_image-matting/summary](https://modelscope.cn/models/damo/cv_unet_image-matting/summary)

119
app.py

@ -0,0 +1,119 @@
# -*- coding: utf-8 -*-
import sys
from fastapi import FastAPI, File, UploadFile, Form, Response
from fastapi import Request
import requests
import cv2
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.outputs import OutputKeys
import numpy as np
from starlette.staticfiles import StaticFiles
from starlette.templating import Jinja2Templates
app = FastAPI()
model_paths = {
"universal": {'path': 'damo/cv_unet_universal-matting', 'task': Tasks.universal_matting},
"people": {'path': 'damo/cv_unet_image-matting', 'task': Tasks.portrait_matting},
}
default_model = list(model_paths.keys())[0]
default_model_info = model_paths[default_model]
loaded_models = {default_model: pipeline(default_model_info['task'], model=default_model_info['path'])}
class ModelLoader:
def __init__(self):
self.loaded_models = {default_model: loaded_models[default_model]}
def load_model(self, model_name):
if model_name not in self.loaded_models:
model_info = model_paths[model_name]
model_path = model_info['path']
task_group = model_info['task']
self.loaded_models[model_name] = pipeline(task_group, model=model_path)
return self.loaded_models[model_name]
model_loader = ModelLoader()
@app.post("/switch_model/{new_model}")
async def switch_model(new_model: str):
if new_model not in model_paths:
return {"content": "Invalid model selection"}, 400
model_info = model_paths[new_model]
loaded_models[new_model] = pipeline(model_info['task'], model=model_info['path'])
model_loader.loaded_models = loaded_models
return {"content": f"Switched to model: {new_model}"}, 200
@app.post("/matting")
async def matting(image: UploadFile = File(...), model: str = Form(default=default_model, alias="model")):
image_bytes = await image.read()
img = cv2.imdecode(np.frombuffer(image_bytes, np.uint8), cv2.IMREAD_COLOR)
if model not in model_paths:
return {"content": "Invalid model selection"}, 400
selected_model = model_loader.load_model(model)
result = selected_model(img)
output_img = result[OutputKeys.OUTPUT_IMG]
output_bytes = cv2.imencode('.png', output_img)[1].tobytes()
return Response(content=output_bytes, media_type='image/png')
@app.post("/matting/url")
async def matting_url(request: Request, model: str = Form(default=default_model, alias="model")):
try:
json_data = await request.json()
image_url = json_data.get("image_url")
except Exception as e:
return {"content": f"Error parsing JSON data: {str(e)}"}, 400
if not image_url:
return {"content": "Image URL is required"}, 400
response = requests.get(image_url)
if response.status_code != 200:
return {"content": "Failed to fetch image from URL"}, 400
img_array = np.frombuffer(response.content, dtype=np.uint8)
img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
if model not in model_paths:
return {"content": "Invalid model selection"}, 400
selected_model = model_loader.load_model(model)
result = selected_model(img)
output_img = result[OutputKeys.OUTPUT_IMG]
output_bytes = cv2.imencode('.png', output_img)[1].tobytes()
return Response(content=output_bytes, media_type='image/png')
templates = Jinja2Templates(directory="web")
app.mount("/static", StaticFiles(directory="web/static"), name="static")
@app.get("/")
async def read_index(request: Request):
return templates.TemplateResponse("index.html", {"request": request, "default_model": default_model,
"available_models": list(model_paths.keys())})
if __name__ == "__main__":
import uvicorn
defult_bind_host = "0.0.0.0" if sys.platform != "win32" else "127.0.0.1"
uvicorn.run(app, host=defult_bind_host, port=8000)

@ -0,0 +1,10 @@
fastapi==0.108.0
opencv-python
requests
modelscope>=1.10.0
torch==2.1.2
transformers==4.36.2
sentencepiece==0.1.*
tensorflow
python-multipart
uvicorn

@ -0,0 +1,145 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Image Matting</title>
<style>
body {
font-family: 'Arial', sans-serif;
background-color: #f4f4f4;
margin: 0;
padding: 0;
}
header {
background-color: #333;
color: white;
padding: 1em;
text-align: center;
}
main {
max-width: 800px;
margin: 2em auto;
background-color: white;
padding: 2em;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
text-align: center;
}
#upload-form {
text-align: center;
margin-bottom: 2em;
}
#images-container {
display: flex;
justify-content: space-between;
align-items: center;
}
#original-img,
#result-img {
max-width: 45%;
height: auto;
border: 1px solid #ccc;
}
</style>
</head>
<body>
<header>
<h1>Image Matting</h1>
</header>
<a href="https://github.com/ihmily"><img style="position: absolute; top: 0; right: 0; border: 0;" decoding="async" width="149" height="149" src="/static/images/forkme_right_gray_6d6d6d.png" class="attachment-full size-full" alt="Fork me on GitHub" loading="lazy" data-recalc-dims="1"></a>
<main>
<form id="upload-form" enctype="multipart/form-data">
<label for="image-upload">Select an image:</label>
<input type="file" id="image-upload" accept="image/*" required>
<label for="model-select">Select a model:</label>
<select id="model-select" name="model">
{% for model in available_models %}
<option value="{{ model }}" {% if model == default_model %}selected{% endif %}>{{ model }}</option>
{% endfor %}
</select>
<button type="button" id="run" onclick="uploadImage()">Upload</button>
</form>
<div id="images-container">
<img id="original-img" alt=" " src="">
<img id="result-img" alt=" " src="">
</div>
</main>
<script>
document.getElementById("image-upload").addEventListener("change", function() {
const inputElement = this;
const file = inputElement.files[0];
if (file) {
const originalImgElement = document.getElementById("original-img");
originalImgElement.src = URL.createObjectURL(file);
document.getElementById("result-img").src = "";
}
});
async function uploadImage() {
const inputElement = document.getElementById("image-upload");
const file = inputElement.files[0];
if (file) {
const formData = new FormData();
formData.append("image", file);
const modelSelect = document.getElementById("model-select");
const selectedModel = modelSelect.value;
formData.append("model", selectedModel);
const response = await fetch("/matting", {
method: "POST",
body: formData,
});
if (response.ok) {
const resultBlob = await response.blob();
const resultImgElement = document.getElementById("result-img");
resultImgElement.src = URL.createObjectURL(resultBlob);
} else {
alert("Matting failed. Please try again.");
}
} else {
alert("Please select an image.");
}
}
document.getElementById("model-select").addEventListener("change", function() {
const newModel = this.value;
alert(`Switching to model: ${newModel}`);
fetch(`/switch_model/${newModel}`, {
method: "POST",
})
.then(response => {
if (!response.ok) {
throw new Error(`HTTP error! status: ${response.status}`);
}
return response.json();
})
.then(data => {
alert(`Switched to model: ${newModel}`);
})
.catch(error => {
alert(`Model switch failed. Please try again. Error: ${error}`);
});
});
</script>
</body>
</html>

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.7 KiB

Loading…
Cancel
Save