# -*- coding: utf-8 -*- import sys import os import uuid from datetime import datetime from fastapi import FastAPI, File, UploadFile, Form, HTTPException from fastapi import Request import requests import cv2 from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks from modelscope.outputs import OutputKeys import numpy as np from starlette.staticfiles import StaticFiles from starlette.templating import Jinja2Templates app = FastAPI() model_paths = { "universal": {'path': 'damo/cv_unet_universal-matting', 'task': Tasks.universal_matting}, "people": {'path': 'damo/cv_unet_image-matting', 'task': Tasks.portrait_matting}, } default_model = list(model_paths.keys())[0] default_model_info = model_paths[default_model] loaded_models = {default_model: pipeline(default_model_info['task'], model=default_model_info['path'])} UPLOAD_FOLDER = "./upload" OUTPUT_FOLDER = "./output" os.makedirs(UPLOAD_FOLDER, exist_ok=True) os.makedirs(OUTPUT_FOLDER, exist_ok=True) class ModelLoader: def __init__(self): self.loaded_models = {default_model: loaded_models[default_model]} def load_model(self, model_name): if model_name not in self.loaded_models: model_info = model_paths[model_name] model_path = model_info['path'] task_group = model_info['task'] self.loaded_models[model_name] = pipeline(task_group, model=model_path) return self.loaded_models[model_name] model_loader = ModelLoader() # remove excess transparent background and crop the image def crop_image_by_alpha_channel(input_image: np.ndarray | str, output_path: str): img_array = cv2.imread(input_image, cv2.IMREAD_UNCHANGED) if isinstance(input_image, str) else input_image if img_array.shape[2] != 4: raise ValueError("Input image must have an alpha channel") alpha_channel = img_array[:, :, 3] bbox = cv2.boundingRect(alpha_channel) x, y, w, h = bbox cropped_img_array = img_array[y:y + h, x:x + w] cv2.imwrite(output_path, cropped_img_array) return output_path @app.post("/switch_model/{new_model}") async def switch_model(new_model: str): if new_model not in model_paths: return {"content": "Invalid model selection"}, 400 model_info = model_paths[new_model] loaded_models[new_model] = pipeline(model_info['task'], model=model_info['path']) model_loader.loaded_models = loaded_models return {"content": f"Switched to model: {new_model}"}, 200 @app.post("/matting") async def matting(image: UploadFile = File(...), model: str = Form(default=default_model, alias="model")): image_bytes = await image.read() img = cv2.imdecode(np.frombuffer(image_bytes, np.uint8), cv2.IMREAD_COLOR) if model not in model_paths: return {"content": "Invalid model selection"}, 400 selected_model = model_loader.load_model(model) filename = uuid.uuid4() original_image_filename = f"original_{filename}.png" image_filename = f"image_{filename}.png" mask_filename = f"mask_{filename}.png" cv2.imwrite(os.path.join(UPLOAD_FOLDER, original_image_filename), img) result = selected_model(img) cv2.imwrite(os.path.join(OUTPUT_FOLDER, image_filename), result[OutputKeys.OUTPUT_IMG]) cv2.imwrite(os.path.join(OUTPUT_FOLDER, mask_filename), result[OutputKeys.OUTPUT_IMG][:, :, 3]) response_data = { "result_image_url": f"/output/{image_filename}", "mask_image_url": f"/output/{mask_filename}", "original_image_size": {"width": img.shape[1], "height": img.shape[0]}, "generation_time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), } return response_data @app.post("/matting/url") async def matting_url(request: Request, model: str = Form(default=default_model, alias="model")): try: json_data = await request.json() image_url = json_data.get("image_url") except Exception as e: raise HTTPException(status_code=400, detail=f"Error parsing JSON data: {str(e)}") if not image_url: raise HTTPException(status_code=400, detail="Image URL is required") try: response = requests.get(image_url) response.raise_for_status() img_array = np.frombuffer(response.content, dtype=np.uint8) img = cv2.imdecode(img_array, cv2.IMREAD_COLOR) except requests.RequestException as e: raise HTTPException(status_code=400, detail=f"Failed to fetch image from URL: {str(e)}") if model not in model_paths: raise HTTPException(status_code=400, detail="Invalid model selection") selected_model = model_loader.load_model(model) filename = uuid.uuid4() original_image_filename = f"original_{filename}.png" image_filename = f"image_{filename}.png" mask_filename = f"mask_{filename}.png" cv2.imwrite(os.path.join(UPLOAD_FOLDER, original_image_filename), img) result = selected_model(img) cv2.imwrite(os.path.join(OUTPUT_FOLDER, image_filename), result[OutputKeys.OUTPUT_IMG]) cv2.imwrite(os.path.join(OUTPUT_FOLDER, mask_filename), result[OutputKeys.OUTPUT_IMG][:, :, 3]) response_data = { "result_image_url": f"/output/{image_filename}", "mask_image_url": f"/output/{mask_filename}", "original_image_size": {"width": img.shape[1], "height": img.shape[0]}, "generation_time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), } return response_data templates = Jinja2Templates(directory="web") app.mount("/static", StaticFiles(directory="./web/static"), name="static") app.mount("/output", StaticFiles(directory="./output"), name="output") app.mount("/upload", StaticFiles(directory="./upload"), name="upload") @app.get("/") async def read_index(request: Request): return templates.TemplateResponse("index.html", {"request": request, "default_model": default_model, "available_models": list(model_paths.keys())}) if __name__ == "__main__": import uvicorn defult_bind_host = "0.0.0.0" if sys.platform != "win32" else "127.0.0.1" uvicorn.run(app, host=defult_bind_host, port=8000)