You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
173 lines
6.0 KiB
Python
173 lines
6.0 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
import sys
|
|
import os
|
|
import uuid
|
|
from datetime import datetime
|
|
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
|
|
from fastapi import Request
|
|
import requests
|
|
import cv2
|
|
from modelscope.pipelines import pipeline
|
|
from modelscope.utils.constant import Tasks
|
|
from modelscope.outputs import OutputKeys
|
|
import numpy as np
|
|
from starlette.staticfiles import StaticFiles
|
|
from starlette.templating import Jinja2Templates
|
|
|
|
app = FastAPI()
|
|
|
|
model_paths = {
|
|
"universal": {'path': 'damo/cv_unet_universal-matting', 'task': Tasks.universal_matting},
|
|
"people": {'path': 'damo/cv_unet_image-matting', 'task': Tasks.portrait_matting},
|
|
}
|
|
|
|
default_model = list(model_paths.keys())[0]
|
|
default_model_info = model_paths[default_model]
|
|
loaded_models = {default_model: pipeline(default_model_info['task'], model=default_model_info['path'])}
|
|
|
|
UPLOAD_FOLDER = "./upload"
|
|
OUTPUT_FOLDER = "./output"
|
|
|
|
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
|
os.makedirs(OUTPUT_FOLDER, exist_ok=True)
|
|
|
|
|
|
class ModelLoader:
|
|
def __init__(self):
|
|
self.loaded_models = {default_model: loaded_models[default_model]}
|
|
|
|
def load_model(self, model_name):
|
|
if model_name not in self.loaded_models:
|
|
model_info = model_paths[model_name]
|
|
model_path = model_info['path']
|
|
task_group = model_info['task']
|
|
|
|
self.loaded_models[model_name] = pipeline(task_group, model=model_path)
|
|
return self.loaded_models[model_name]
|
|
|
|
|
|
model_loader = ModelLoader()
|
|
|
|
|
|
# remove excess transparent background and crop the image
|
|
def crop_image_by_alpha_channel(input_image: np.ndarray | str, output_path: str):
|
|
img_array = cv2.imread(input_image, cv2.IMREAD_UNCHANGED) if isinstance(input_image, str) else input_image
|
|
if img_array.shape[2] != 4:
|
|
raise ValueError("Input image must have an alpha channel")
|
|
|
|
alpha_channel = img_array[:, :, 3]
|
|
bbox = cv2.boundingRect(alpha_channel)
|
|
x, y, w, h = bbox
|
|
cropped_img_array = img_array[y:y + h, x:x + w]
|
|
cv2.imwrite(output_path, cropped_img_array)
|
|
return output_path
|
|
|
|
|
|
@app.post("/switch_model/{new_model}")
|
|
async def switch_model(new_model: str):
|
|
if new_model not in model_paths:
|
|
return {"content": "Invalid model selection"}, 400
|
|
model_info = model_paths[new_model]
|
|
|
|
loaded_models[new_model] = pipeline(model_info['task'], model=model_info['path'])
|
|
model_loader.loaded_models = loaded_models
|
|
return {"content": f"Switched to model: {new_model}"}, 200
|
|
|
|
|
|
@app.post("/matting")
|
|
async def matting(image: UploadFile = File(...), model: str = Form(default=default_model, alias="model")):
|
|
image_bytes = await image.read()
|
|
img = cv2.imdecode(np.frombuffer(image_bytes, np.uint8), cv2.IMREAD_COLOR)
|
|
|
|
if model not in model_paths:
|
|
return {"content": "Invalid model selection"}, 400
|
|
|
|
selected_model = model_loader.load_model(model)
|
|
|
|
filename = uuid.uuid4()
|
|
original_image_filename = f"original_{filename}.png"
|
|
image_filename = f"image_{filename}.png"
|
|
mask_filename = f"mask_{filename}.png"
|
|
|
|
cv2.imwrite(os.path.join(UPLOAD_FOLDER, original_image_filename), img)
|
|
|
|
result = selected_model(img)
|
|
|
|
cv2.imwrite(os.path.join(OUTPUT_FOLDER, image_filename), result[OutputKeys.OUTPUT_IMG])
|
|
cv2.imwrite(os.path.join(OUTPUT_FOLDER, mask_filename), result[OutputKeys.OUTPUT_IMG][:, :, 3])
|
|
|
|
response_data = {
|
|
"result_image_url": f"/output/{image_filename}",
|
|
"mask_image_url": f"/output/{mask_filename}",
|
|
"original_image_size": {"width": img.shape[1], "height": img.shape[0]},
|
|
"generation_time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
|
}
|
|
|
|
return response_data
|
|
|
|
|
|
@app.post("/matting/url")
|
|
async def matting_url(request: Request, model: str = Form(default=default_model, alias="model")):
|
|
try:
|
|
json_data = await request.json()
|
|
image_url = json_data.get("image_url")
|
|
except Exception as e:
|
|
raise HTTPException(status_code=400, detail=f"Error parsing JSON data: {str(e)}")
|
|
|
|
if not image_url:
|
|
raise HTTPException(status_code=400, detail="Image URL is required")
|
|
|
|
try:
|
|
response = requests.get(image_url)
|
|
response.raise_for_status()
|
|
img_array = np.frombuffer(response.content, dtype=np.uint8)
|
|
img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
|
|
except requests.RequestException as e:
|
|
raise HTTPException(status_code=400, detail=f"Failed to fetch image from URL: {str(e)}")
|
|
|
|
if model not in model_paths:
|
|
raise HTTPException(status_code=400, detail="Invalid model selection")
|
|
|
|
selected_model = model_loader.load_model(model)
|
|
|
|
filename = uuid.uuid4()
|
|
original_image_filename = f"original_{filename}.png"
|
|
image_filename = f"image_{filename}.png"
|
|
mask_filename = f"mask_{filename}.png"
|
|
|
|
cv2.imwrite(os.path.join(UPLOAD_FOLDER, original_image_filename), img)
|
|
|
|
result = selected_model(img)
|
|
|
|
cv2.imwrite(os.path.join(OUTPUT_FOLDER, image_filename), result[OutputKeys.OUTPUT_IMG])
|
|
cv2.imwrite(os.path.join(OUTPUT_FOLDER, mask_filename), result[OutputKeys.OUTPUT_IMG][:, :, 3])
|
|
|
|
response_data = {
|
|
"result_image_url": f"/output/{image_filename}",
|
|
"mask_image_url": f"/output/{mask_filename}",
|
|
"original_image_size": {"width": img.shape[1], "height": img.shape[0]},
|
|
"generation_time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
|
}
|
|
|
|
return response_data
|
|
|
|
|
|
templates = Jinja2Templates(directory="web")
|
|
app.mount("/static", StaticFiles(directory="./web/static"), name="static")
|
|
app.mount("/output", StaticFiles(directory="./output"), name="output")
|
|
app.mount("/upload", StaticFiles(directory="./upload"), name="upload")
|
|
|
|
|
|
@app.get("/")
|
|
async def read_index(request: Request):
|
|
return templates.TemplateResponse("index.html", {"request": request, "default_model": default_model,
|
|
"available_models": list(model_paths.keys())})
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import uvicorn
|
|
|
|
defult_bind_host = "0.0.0.0" if sys.platform != "win32" else "127.0.0.1"
|
|
uvicorn.run(app, host=defult_bind_host, port=8000)
|