You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
517 lines
52 KiB
Plaintext
517 lines
52 KiB
Plaintext
6 months ago
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"id": "ae02d6c8",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import pandas as pd\n",
|
||
|
"import numpy as np\n",
|
||
|
"import matplotlib.pyplot as plt\n",
|
||
|
"from sklearn import linear_model"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "18cfa351",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"<img src='linear_regression.png' width=50%>"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "e7ac8c6d",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"$$最小化\\sum^n_{i=1}(d_i)^2$$"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 2,
|
||
|
"id": "6729b5ba",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"df = pd.read_csv(\"housing_price.csv\")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 3,
|
||
|
"id": "717fda9f",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<style scoped>\n",
|
||
|
" .dataframe tbody tr th:only-of-type {\n",
|
||
|
" vertical-align: middle;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe tbody tr th {\n",
|
||
|
" vertical-align: top;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe thead th {\n",
|
||
|
" text-align: right;\n",
|
||
|
" }\n",
|
||
|
"</style>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>area</th>\n",
|
||
|
" <th>price</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>0</th>\n",
|
||
|
" <td>86.45</td>\n",
|
||
|
" <td>117.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1</th>\n",
|
||
|
" <td>91.57</td>\n",
|
||
|
" <td>98.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>2</th>\n",
|
||
|
" <td>85.52</td>\n",
|
||
|
" <td>114.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>3</th>\n",
|
||
|
" <td>103.60</td>\n",
|
||
|
" <td>146.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>4</th>\n",
|
||
|
" <td>105.25</td>\n",
|
||
|
" <td>106.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>5</th>\n",
|
||
|
" <td>99.00</td>\n",
|
||
|
" <td>109.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>6</th>\n",
|
||
|
" <td>87.95</td>\n",
|
||
|
" <td>91.5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" area price\n",
|
||
|
"0 86.45 117.0\n",
|
||
|
"1 91.57 98.0\n",
|
||
|
"2 85.52 114.0\n",
|
||
|
"3 103.60 146.0\n",
|
||
|
"4 105.25 106.0\n",
|
||
|
"5 99.00 109.0\n",
|
||
|
"6 87.95 91.5"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 3,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"df"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 6,
|
||
|
"id": "8bae038f",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"<matplotlib.collections.PathCollection at 0x129771424c8>"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 6,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvn0lEQVR4nO3dfVjUdb7/8dcAiqQyBCYwgohpamlGuhEVpclVaGu26JbGZdaans7J0ujGPP3Ubo/dbanlydOte7WWbR2yPbbZmlbiSqQW282WR40UFHSNANFUbj6/P+YwOXEj4sDMfHw+rmsunc/3M595f/zyZV5+78ZhjDECAACwVIi/CwAAAGhPhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKuF+buAQFBfX689e/aoe/fucjgc/i4HAAC0gjFGBw4ckMvlUkhI8/tvCDuS9uzZo8TERH+XAQAA2qC4uFgJCQnNLifsSOrevbsk9z9WZGSkn6sBAACtUVVVpcTERM/neHMIO5Ln0FVkZCRhBwCAIHO8U1A4QRkAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI07KAMAYIO6OikvTyotleLjpfR0KTTU31UFBMIOAADBLjdXmjlTKin5uS0hQVq0SMrK8l9dAYLDWAAABLPcXGnCBO+gI0m7d7vbc3P9U1cAIewAABCs6urce3SMabysoW3WLHe/UxhhBwCAYJWX13iPzrGMkYqL3f1OYYQdAACCVWmpb/tZirADAECwio/3bT9LEXYAAAhW6enuq64cjqaXOxxSYqK73ymMsAMAQLAKDXVfXi41DjwNzxcuPOXvt0PYAQAgmGVlSW+9JfXq5d2ekOBu5z473FQQAICgl5UljRvHHZSbQdgBAMAGoaHSiBH+riIgcRgLAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACs5tews379eo0dO1Yul0sOh0MrV65stu8tt9wih8OhhQsXerWXl5crOztbkZGRioqK0tSpU1VdXd2+hQMAgKDh17Bz8OBBDR06VEuWLGmx39tvv61PPvlELper0bLs7Gx9/fXXWrNmjVatWqX169dr+vTp7VUyAAAIMmH+fPPRo0dr9OjRLfbZvXu3brvtNr3//vu66qqrvJZ98803Wr16tTZt2qThw4dLkp555hmNGTNGTz75ZJPhCAAAnFoC+pyd+vp6TZ48WXfffbfOOeecRsvz8/MVFRXlCTqSlJGRoZCQEBUUFDQ77pEjR1RVVeX1AAAAdgrosPPYY48pLCxMt99+e5PLy8rK1LNnT6+2sLAwRUdHq6ysrNlxFyxYIKfT6XkkJib6tG4AABA4AjbsbNmyRYsWLdKyZcvkcDh8OvacOXNUWVnpeRQXF/t0fAAAEDgCNuzk5eVp37596t27t8LCwhQWFqadO3fqzjvvVJ8+fSRJcXFx2rdvn9framtrVV5erri4uGbHDg8PV2RkpNcDAADYya8nKLdk8uTJysjI8Gq78sorNXnyZN10002SpLS0NFVUVGjLli0aNmyYJGndunWqr69Xampqh9cMAAACj1/DTnV1tbZv3+55XlRUpMLCQkVHR6t3796KiYnx6t+pUyfFxcVpwIABkqRBgwYpMzNT06ZN09KlS1VTU6MZM2Zo4sSJXIkFAAAk+fkw1ubNm5WSkqKUlBRJUk5OjlJSUjRv3rxWj7F8+XINHDhQo0aN0pgxY3TJJZfo+eefb6+SAQBAkHEYY4y/i/C3qqoqOZ1OVVZWcv4OAABBorWf3wF7gjIAAIAvEHYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqfg0769ev19ixY+VyueRwOLRy5Uqv5ffff78GDhyorl276vTTT1dGRoYKCgq8+pSXlys7O1uRkZGKiorS1KlTVV1d3YGzAAAAgcyvYefgwYMaOnSolixZ0uTys846S88++6y+/PJLbdiwQX369NEVV1yhf/7zn54+2dnZ+vrrr7VmzRqtWrVK69ev1/Tp0ztqCgAAIMA5jDHG30VIksPh0Ntvv61rrrmm2T5VVVVyOp364IMPNGrUKH3zzTc6++yztWnTJg0fPlyStHr1ao0ZM0YlJSVyuVyteu+GcSsrKxUZGemL6QAAgHbW2s/voDln5+jRo3r++efldDo1dOhQSVJ+fr6ioqI8QUeSMjIyFBIS0uhw17GOHDmiqqoqrwcAALBTwIedVatWqVu3burSpYuefvpprVmzRj169JAklZWVqWfPnl79w8LCFB0drbKysmbHXLBggZxOp+eRmJjYrnMAAAD+E/BhZ+TIkSosLNTGjRuVmZmpa6+9Vvv27TupMefMmaPKykrPo7i42EfVAgCAQBPwYadr167q16+fLrzwQr300ksKCwvTSy+9JEmKi4trFHxqa2tVXl6uuLi4ZscMDw9XZGSk1wMAANgp4MPOL9XX1+vIkSOSpLS0NFVUVGjLli2e5evWrVN9fb1SU1P9VSIAAAggYf588+rqam3fvt3zvKioSIWFhYqOjlZMTIweeeQRXX311YqPj9f+/fu1ZMkS7d69W7/97W8lSYMGDVJmZqamTZumpUuXqqamRjNmzNDEiRNbfSUWAACwm1/DzubNmzVy5EjP85ycHEnSlClTtHTpUn377bf6wx/+oP379ysmJka/+tWvlJeXp3POOcfzmuXLl2vGjBkaNWqUQkJCNH78eC1evLjD5wIAAAJTwNxnx5+4zw4AAMHHuvvsAAAAtAVhBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsFqbw86rr76qiy++WC6XSzt37pQkLVy4UO+8847PigMAADhZbQo7zz33nHJycjRmzBhVVFSorq5OkhQVFaWFCxf6sj4AAICT0qaw88wzz+iFF17Qfffdp9DQUE/78OHD9eWXX7Z6nPXr12vs2LFyuVxyOBxauXKlZ1lNTY1mz56tIUOGqGvXrnK5XLrhhhu0Z88erzHKy8uVnZ2tyMhIRUVFaerUqaqurm7LtAAAgIXaFHaKioqUkpLSqD08PFwHDx5s9TgHDx7U0KFDtWTJkkbLDh06pM8++0xz587VZ599ptzcXG3dulVXX321V7/s7Gx9/fXXWrNmjVatWqX169dr+vTpJz4pAABgpbC2vCg5OVmFhYVKSkryal+9erUGDRr
|
||
|
"text/plain": [
|
||
|
"<Figure size 640x480 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"%matplotlib inline\n",
|
||
|
"plt.xlabel(\"area\")\n",
|
||
|
"plt.ylabel(\"price\")\n",
|
||
|
"plt.scatter(df.area, df.price, c='r')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 18,
|
||
|
"id": "1dbdd68d",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"(7, 1)"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 18,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"df[[\"area\"]].shape"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 30,
|
||
|
"id": "c147b635",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"LinearRegression()"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 30,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"model = linear_model.LinearRegression()\n",
|
||
|
"model.fit(df[[\"area\"]].values, df.price.values)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 31,
|
||
|
"id": "cd1a7008",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"(array([0.83809367]), 32.70161672527138)"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 31,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"model.coef_, model.intercept_"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 34,
|
||
|
"id": "d7e74d63",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"array([115.93269948])"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 34,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"model.predict(np.array([[99.31]]))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 35,
|
||
|
"id": "4fffcc21",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"array([115.93269948])"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 35,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"price = model.coef_ * 99.31 + model.intercept_\n",
|
||
|
"price"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "410fa831",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"画出这条预测线"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 38,
|
||
|
"id": "a5fe689e",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stderr",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"D:\\envs\\stark-lin\\lib\\site-packages\\numpy\\core\\shape_base.py:65: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n",
|
||
|
" ary = asanyarray(ary)\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"[<matplotlib.lines.Line2D at 0x12978a40ec8>]"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 38,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIoUlEQVR4nO3deViVdf7/8edhR2URlE1BUVEQLE3LTK1MJrdUtL6NDVPWNDYtlmYzpZNgblnN1KjV1GRN9pupnJlG0ax0HDWXMrfUBDfcFQVUhMMi2zn37w+KidRCBO5zDq/HdXEV9/05N+/zKTkv7+XzthiGYSAiIiLiotzMLkBERESkISnsiIiIiEtT2BERERGXprAjIiIiLk1hR0RERFyawo6IiIi4NIUdERERcWkeZhfgCOx2O6dOncLPzw+LxWJ2OSIiIlILhmFQWFhIREQEbm6XP3+jsAOcOnWKyMhIs8sQERGROjhx4gRt27a97H6FHcDPzw+omix/f3+TqxEREZHasFqtREZGVn+OX47CDlRfuvL391fYERERcTI/dQuKblAWERERl6awIyIiIi5NYUdERERcmsKOiIiIuDSFHREREXFpCjsiIiLi0hR2RERExKUp7IiIiIhLU9gRERERl6YVlEVERFydzQYbNsDp0xAeDv37g7u72VU1GoUdERERV7Z4MUyYACdP/m9b27Ywbx6MHm1eXY1Il7FERERc1eLFcNddNYMOQFZW1fbFi82pq5Ep7IiIiLgim63qjI5hXLzvu20TJ1aNc3EKOyIiIq5ow4aLz+h8n2HAiRNV41ycwo6IiIgrOn26fsc5MYUdERERVxQeXr/jnJjCjoiIiCvq37/qqSuL5dL7LRaIjKwa5+IUdkRERFyRu3vV4+VwceD57vu5c5vEejsKOyIiIq5q9Gj46CNo06bm9rZtq7Y3kXV2tKigiIiIKxs9GkaO1ArKIiIi4sLc3eHWW82uwjS6jCUiIiIuTWFHREREXJrCjoiIiLg0hR0RERFxaQo7IiIi4tIUdkRERMSlKeyIiIiISzM17Kxfv57hw4cTERGBxWIhLS3tsmMffvhhLBYLc+fOrbE9Ly+P5ORk/P39CQwM5MEHH6SoqKhhCxcRERGnYWrYKS4u5tprr+X111//0XFLlizhq6++IiIi4qJ9ycnJZGRksGrVKpYvX8769et56KGHGqpkERERcTKmrqA8ZMgQhgwZ8qNjsrKyePzxx1m5ciXDhg2rsW/v3r2sWLGCrVu30qtXLwBeffVVhg4dyh//+MdLhiMRERFpWhz6nh273c69997L7373O+Lj4y/av2nTJgIDA6uDDkBiYiJubm5s3rz5ssctKyvDarXW+BIRERHX5NBh58UXX8TDw4Mnnnjikvuzs7MJCQmpsc3Dw4OgoCCys7Mve9w5c+YQEBBQ/RUZGVmvdYuIiIjjcNiws337dubNm8fChQuxWCz1euwpU6ZQUFBQ/XXixIl6Pb6IiIg4DocNOxs2bCA3N5eoqCg8PDzw8PDg2LFjPPXUU7Rv3x6AsLAwcnNza7yusrKSvLw8wsLCLntsb29v/P39a3yJiIiIazL1BuUfc++995KYmFhj26BBg7j33nt54IEHAOjTpw/5+fls376dnj17ArBmzRrsdju9e/du9JpFRETE8ZgadoqKijh48GD190eOHGHnzp0EBQURFRVFcHBwjfGenp6EhYXRpUsXAOLi4hg8eDDjxo3jzTffpKKigvHjxzNmzBg9iSUiIiKAyZextm3bRo8ePejRowcAkyZNokePHqSmptb6GO+//z6xsbEMHDiQoUOH0q9fP956662GKllEREScjMUwDMPsIsxmtVoJCAigoKBA9++IiIg4idp+fjvsDcoiIiIi9UFhR0RERFyawo6IiIi4NIUdERERcWkKOyIiIuLSFHZERETEpSnsiIiIiEtT2BERERGXprAjIiIiLk1hR0RERFyawo6IiIi4NIUdERERcWkKOyIiIuLSFHZERETEpSnsiIiIiEtT2BERERGXprAjIiIiLk1hR0RERFyawo6IiIi4NIUdERERcWkKOyIiIuLSFHZERETEpSnsiIiIiEtT2BERERGXprAjIiIiLk1hR0RERFyawo6IiIi4NIUdERERcWkKOyIiIuLSFHZERETEpSnsiIiIiEtT2BERERGXprAjIiIiLk1hR0RERBpMpc3OgZxCU2tQ2BEREZEGseP4eUa+/gV3/2UTecXlptXhYdpPFhEREZeUX1LOiyv2s2jrcQwD/H082J9dSJ+OwabUo7AjIiIi9cIwDP79dRZzPt3LuW/P5Nx5XVumDI2lVQtv0+pS2BEREZGrdiCnkKlL0tlyNA+AmJAWzEpKoHcHc87mfJ/CjoiIiNRZSXkl81Zn8s6GI1TaDXw93ZmQGMOD/aLxdHeMW4MVdkREROSKGYbBf/bkMH1ZBqcKSgG4vWso00bE0ybQ1+TqalLYERERkStyIq+EacsyWLMvF4C2LX2ZPiKegXGhJld2aQo7IiIiUivllXYWbDjMq2syKa2w4+lu4aGbOzB+QAy+Xu5ml3dZCjsiIiLyk748eJaUpekcOlMMQJ8OwcxMiqdTiJ/Jlf00hR0RERG5rNzCUp7/ZC9pO08B0KqFN1OHxTGyewQWi8Xk6mpHYUdEREQuYrMbvL/5GH9YuZ/C0kosFrj3xnY8dXsXAnw9zS7viijsiIiISA3fnMzn2SXp7M4qAKBbmwBmj0rgmraB5hZWRwo7IiIiAkDBhQr+uHI/f998DMMAPx8Pnh7UhV/0boe7m3NcsroUhR0REZEmzjAM0nZmMfuTvZwtqmrzMKpHG6YMjSXEz8fk6q6eqUsbrl+/nuHDhxMRUXWTU1paWvW+iooKnnnmGbp160bz5s2JiIjgvvvu49SpUzWOkZeXR3JyMv7+/gQGBvLggw9SVFTUyO9ERETEOR3MLeSeBV/x5D92cbaonI6tm/PBuN786efdXSLogMlhp7i4mGuvvZbXX3/9on0lJSV8/fXXpKSk8PXXX7N48WL279/PiBEjaoxLTk4mIyODVatWsXz5ctavX89DDz3UWG9BRETEKV0ot/HSin0MmbeBrw7n4ePpxu8GdeGzCTdzU8dWZpdXryyGYRhmFwFgsVhYsmQJSUlJlx2zdetWbrjhBo4dO0ZUVBR79+6la9eubN26lV69egGwYsUKhg4dysmTJ4mIiKjVz7ZarQQEBFBQUIC/v399vB0RERGH9d89OUxblkFW/gUABsaG8NyIeCKDmplc2ZWp7ee3U92zU1BQgMViITAwEIBNmzYRGBhYHXQAEhMTcXNzY/PmzYwaNeqSxykrK6OsrKz6e6vV2qB1i4iIOIKs/As8tyyDVXtyAGgT6Mu04V35WddQp1kzpy6cJuyUlpbyzDPPcM8991Snt+zsbEJCQmqM8/DwICgoiOzs7Msea86cOUyfPr1B6xUREXEU5ZV23tl4hPmrM7lQYcPDzcKv+3fgiYGdaOblNFGgzpziHVZUVHD33XdjGAZvvPHGVR9vypQpTJo0qfp7q9VKZGTkVR9XRETE0Xx1+Bwpaelk5lY9vHNDdBCzkhLoHOr4bR7qi8OHne+CzrFjx1izZk2Na3JhYWHk5ubWGF9ZWUleXh5hYWGXPaa3tzfe3t4NVrOIiIjZzhaV8fyne1n8dRYAwc29+P3QOEZf18alL1ldikOHne+CTmZmJmvXriU4OLjG/j59+pCfn8/27dvp2bMnAGvWrMFut9O7d28zShYRETGV3W7wwZbjvLRiH9Zv2zzcc0MUTw/qQmAzL7PLM4WpYaeoqIiDBw9Wf3/kyBF27txJUFAQ4eHh3HXXXXz99dcsX74cm81WfR9OUFAQXl5exMXFMXjwYMaNG8ebb75JRUUF48ePZ8yYMbV+EktERFyIzQYbNsDp0xAeDv37g7u72VU1mvSsAp5NS2fXiXwA4iP8mZWUQI+oluYWZjJTHz3//PPPGTBgwEXbx44dy3PPPUd0dPQlX7d27VpuvfVWoGpRwfHjx/Pxxx/j5ubGnXfeyfz582nRokWt69C
|
||
|
"text/plain": [
|
||
|
"<Figure size 640x480 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"%matplotlib inline\n",
|
||
|
"plt.xlabel(\"area\")\n",
|
||
|
"plt.ylabel(\"price\")\n",
|
||
|
"plt.scatter(df.area, df.price, c='r')\n",
|
||
|
"plt.plot([0, 111],[model.intercept_, model.predict(np.array([[111]]))])"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 42,
|
||
|
"id": "f7253975",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"preds = pd.read_csv(\"predict.csv\")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 45,
|
||
|
"id": "a27fe359",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<style scoped>\n",
|
||
|
" .dataframe tbody tr th:only-of-type {\n",
|
||
|
" vertical-align: middle;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe tbody tr th {\n",
|
||
|
" vertical-align: top;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe thead th {\n",
|
||
|
" text-align: right;\n",
|
||
|
" }\n",
|
||
|
"</style>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>area</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>0</th>\n",
|
||
|
" <td>150</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1</th>\n",
|
||
|
" <td>128</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>2</th>\n",
|
||
|
" <td>111</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>3</th>\n",
|
||
|
" <td>138</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" area\n",
|
||
|
"0 150\n",
|
||
|
"1 128\n",
|
||
|
"2 111\n",
|
||
|
"3 138"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 45,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"preds"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 50,
|
||
|
"id": "a7ac643a",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"preds[\"predicted\"] = model.predict(preds[[\"area\"]].values)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 51,
|
||
|
"id": "bef47aea",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<style scoped>\n",
|
||
|
" .dataframe tbody tr th:only-of-type {\n",
|
||
|
" vertical-align: middle;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe tbody tr th {\n",
|
||
|
" vertical-align: top;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe thead th {\n",
|
||
|
" text-align: right;\n",
|
||
|
" }\n",
|
||
|
"</style>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>area</th>\n",
|
||
|
" <th>predicted</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>0</th>\n",
|
||
|
" <td>150</td>\n",
|
||
|
" <td>158.415668</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1</th>\n",
|
||
|
" <td>128</td>\n",
|
||
|
" <td>139.977607</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>2</th>\n",
|
||
|
" <td>111</td>\n",
|
||
|
" <td>125.730015</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>3</th>\n",
|
||
|
" <td>138</td>\n",
|
||
|
" <td>148.358544</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" area predicted\n",
|
||
|
"0 150 158.415668\n",
|
||
|
"1 128 139.977607\n",
|
||
|
"2 111 125.730015\n",
|
||
|
"3 138 148.358544"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 51,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"preds"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "e29158e1",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3 (ipykernel)",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.7.9"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 5
|
||
|
}
|