You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

750 lines
24 KiB
Plaintext

6 months ago
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "760ad04a-fb17-473b-8d72-abe818112c00",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "8ff304f9-7c15-4c17-8dc6-5e75be63d940",
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv(\"titanic.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "fdd98246-09d5-4d2b-afb2-cd4c964215d3",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>PassengerId</th>\n",
" <th>Name</th>\n",
" <th>Pclass</th>\n",
" <th>Sex</th>\n",
" <th>Age</th>\n",
" <th>SibSp</th>\n",
" <th>Parch</th>\n",
" <th>Ticket</th>\n",
" <th>Fare</th>\n",
" <th>Cabin</th>\n",
" <th>Embarked</th>\n",
" <th>Survived</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>Braund, Mr. Owen Harris</td>\n",
" <td>3</td>\n",
" <td>male</td>\n",
" <td>22.0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>A/5 21171</td>\n",
" <td>7.2500</td>\n",
" <td>NaN</td>\n",
" <td>S</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n",
" <td>1</td>\n",
" <td>female</td>\n",
" <td>38.0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>PC 17599</td>\n",
" <td>71.2833</td>\n",
" <td>C85</td>\n",
" <td>C</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>Heikkinen, Miss. Laina</td>\n",
" <td>3</td>\n",
" <td>female</td>\n",
" <td>26.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>STON/O2. 3101282</td>\n",
" <td>7.9250</td>\n",
" <td>NaN</td>\n",
" <td>S</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4</td>\n",
" <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n",
" <td>1</td>\n",
" <td>female</td>\n",
" <td>35.0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>113803</td>\n",
" <td>53.1000</td>\n",
" <td>C123</td>\n",
" <td>S</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5</td>\n",
" <td>Allen, Mr. William Henry</td>\n",
" <td>3</td>\n",
" <td>male</td>\n",
" <td>35.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>373450</td>\n",
" <td>8.0500</td>\n",
" <td>NaN</td>\n",
" <td>S</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" PassengerId Name Pclass \\\n",
"0 1 Braund, Mr. Owen Harris 3 \n",
"1 2 Cumings, Mrs. John Bradley (Florence Briggs Th... 1 \n",
"2 3 Heikkinen, Miss. Laina 3 \n",
"3 4 Futrelle, Mrs. Jacques Heath (Lily May Peel) 1 \n",
"4 5 Allen, Mr. William Henry 3 \n",
"\n",
" Sex Age SibSp Parch Ticket Fare Cabin Embarked \\\n",
"0 male 22.0 1 0 A/5 21171 7.2500 NaN S \n",
"1 female 38.0 1 0 PC 17599 71.2833 C85 C \n",
"2 female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S \n",
"3 female 35.0 1 0 113803 53.1000 C123 S \n",
"4 male 35.0 0 0 373450 8.0500 NaN S \n",
"\n",
" Survived \n",
"0 0 \n",
"1 1 \n",
"2 1 \n",
"3 1 \n",
"4 0 "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "53d859fe-700a-4794-8fc1-eb1097b9f8a9",
"metadata": {},
"outputs": [],
"source": [
"df.drop([\"PassengerId\", \"Name\", \"SibSp\", \"Ticket\", \"Cabin\", \"Embarked\"], axis=\"columns\", inplace=True)#inplace=True直接对数据进行操作"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "ec9a94d6-2750-4e73-ad95-0b36a4a2f026",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Pclass</th>\n",
" <th>Sex</th>\n",
" <th>Age</th>\n",
" <th>Parch</th>\n",
" <th>Fare</th>\n",
" <th>Survived</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>3</td>\n",
" <td>male</td>\n",
" <td>22.0</td>\n",
" <td>0</td>\n",
" <td>7.2500</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>female</td>\n",
" <td>38.0</td>\n",
" <td>0</td>\n",
" <td>71.2833</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>female</td>\n",
" <td>26.0</td>\n",
" <td>0</td>\n",
" <td>7.9250</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1</td>\n",
" <td>female</td>\n",
" <td>35.0</td>\n",
" <td>0</td>\n",
" <td>53.1000</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>3</td>\n",
" <td>male</td>\n",
" <td>35.0</td>\n",
" <td>0</td>\n",
" <td>8.0500</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Pclass Sex Age Parch Fare Survived\n",
"0 3 male 22.0 0 7.2500 0\n",
"1 1 female 38.0 0 71.2833 1\n",
"2 3 female 26.0 0 7.9250 1\n",
"3 1 female 35.0 0 53.1000 1\n",
"4 3 male 35.0 0 8.0500 0"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "6541545a-13f5-4d57-bb08-7c95818b90a8",
"metadata": {},
"outputs": [],
"source": [
"dummy = pd.get_dummies(df.Sex,dtype=float)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "3cad29ec-9221-4e9e-bf8d-de8c6645b2ea",
"metadata": {},
"outputs": [],
"source": [
"df = pd.concat([df, dummy], axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "cb141724-1db3-4d18-948a-87e530de6038",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Pclass</th>\n",
" <th>Sex</th>\n",
" <th>Age</th>\n",
" <th>Parch</th>\n",
" <th>Fare</th>\n",
" <th>Survived</th>\n",
" <th>female</th>\n",
" <th>male</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>3</td>\n",
" <td>male</td>\n",
" <td>22.0</td>\n",
" <td>0</td>\n",
" <td>7.2500</td>\n",
" <td>0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>female</td>\n",
" <td>38.0</td>\n",
" <td>0</td>\n",
" <td>71.2833</td>\n",
" <td>1</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>female</td>\n",
" <td>26.0</td>\n",
" <td>0</td>\n",
" <td>7.9250</td>\n",
" <td>1</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1</td>\n",
" <td>female</td>\n",
" <td>35.0</td>\n",
" <td>0</td>\n",
" <td>53.1000</td>\n",
" <td>1</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>3</td>\n",
" <td>male</td>\n",
" <td>35.0</td>\n",
" <td>0</td>\n",
" <td>8.0500</td>\n",
" <td>0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Pclass Sex Age Parch Fare Survived female male\n",
"0 3 male 22.0 0 7.2500 0 0.0 1.0\n",
"1 1 female 38.0 0 71.2833 1 1.0 0.0\n",
"2 3 female 26.0 0 7.9250 1 1.0 0.0\n",
"3 1 female 35.0 0 53.1000 1 1.0 0.0\n",
"4 3 male 35.0 0 8.0500 0 0.0 1.0"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "f80f8d46-eb88-4d81-9fda-6e1bbc987d14",
"metadata": {},
"outputs": [],
"source": [
"df = df.drop(\"Sex\", axis=\"columns\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "40f9e39e-4f53-4ef6-a9ab-2973dc1f59bd",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Pclass</th>\n",
" <th>Age</th>\n",
" <th>Parch</th>\n",
" <th>Fare</th>\n",
" <th>Survived</th>\n",
" <th>female</th>\n",
" <th>male</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>3</td>\n",
" <td>22.0</td>\n",
" <td>0</td>\n",
" <td>7.2500</td>\n",
" <td>0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>38.0</td>\n",
" <td>0</td>\n",
" <td>71.2833</td>\n",
" <td>1</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>26.0</td>\n",
" <td>0</td>\n",
" <td>7.9250</td>\n",
" <td>1</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1</td>\n",
" <td>35.0</td>\n",
" <td>0</td>\n",
" <td>53.1000</td>\n",
" <td>1</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>3</td>\n",
" <td>35.0</td>\n",
" <td>0</td>\n",
" <td>8.0500</td>\n",
" <td>0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Pclass Age Parch Fare Survived female male\n",
"0 3 22.0 0 7.2500 0 0.0 1.0\n",
"1 1 38.0 0 71.2833 1 1.0 0.0\n",
"2 3 26.0 0 7.9250 1 1.0 0.0\n",
"3 1 35.0 0 53.1000 1 1.0 0.0\n",
"4 3 35.0 0 8.0500 0 0.0 1.0"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "9765398d-8761-4857-864d-ee2bb381db4f",
"metadata": {},
"outputs": [],
"source": [
"y = df.Survived"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "2a25bb9b-bd32-4e9f-b3a1-eebb9827150f",
"metadata": {},
"outputs": [],
"source": [
"x = df.drop(\"Survived\", axis=\"columns\")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "d6578f9c-ecb7-4c8d-9655-0f38dff4732d",
"metadata": {},
"outputs": [],
"source": [
"x.Age = x.Age.fillna(x.Age.mean())"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "f61eb7dd-32b4-4f73-930f-5f35e703b262",
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "35140d75-f92b-4431-93d3-6ce6c3506ae9",
"metadata": {},
"outputs": [],
"source": [
"x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "85fdca0d-289a-410f-a27f-b0ad1dac7d6b",
"metadata": {},
"outputs": [],
"source": [
"from sklearn.naive_bayes import GaussianNB"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "4b84bfda-b2e9-40b2-a1f1-edacc83df97e",
"metadata": {},
"outputs": [],
"source": [
"gnb = GaussianNB()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "7359396a-3920-44fd-9787-7526eaa104cc",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<style>#sk-container-id-1 {color: black;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-r
],
"text/plain": [
"GaussianNB()"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"gnb.fit(x_train, y_train)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "2b043bdd-481e-4d1b-bc6d-05fe754b34b4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.7877094972067039"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"gnb.score(x_test, y_test)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "218dd605-da4f-4794-aec4-3a605bb6aece",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"50 0\n",
"627 1\n",
"359 1\n",
"711 0\n",
"249 0\n",
"393 1\n",
"44 1\n",
"80 0\n",
"849 1\n",
"826 0\n",
"Name: Survived, dtype: int64"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y_test[:10]"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "a27d97ec-2163-4d5f-bc07-b4538715fe7a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[9.79369123e-01, 2.06308775e-02],\n",
" [1.89602239e-03, 9.98103978e-01],\n",
" [7.12732233e-02, 9.28726777e-01],\n",
" [9.10542388e-01, 8.94576121e-02],\n",
" [9.75459216e-01, 2.45407840e-02],\n",
" [2.71273089e-04, 9.99728727e-01],\n",
" [6.33906625e-02, 9.36609338e-01],\n",
" [9.88859325e-01, 1.11406748e-02],\n",
" [1.22867429e-03, 9.98771326e-01],\n",
" [9.80998751e-01, 1.90012495e-02]])"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"gnb.predict_proba(x_test[:10])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4d6e364f-7e4a-4259-b101-795bf2f54635",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.0"
}
},
"nbformat": 4,
"nbformat_minor": 5
}