{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "d60aff11", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from sklearn.linear_model import LinearRegression" ] }, { "cell_type": "code", "execution_count": 2, "id": "3aafae87", "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv(\"multivariable.csv\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "5ecbf4af", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
areaagebashroomprice
088.5451.0118.0
193.3681.0114.0
298.90132.0102.0
398.5852.0118.4
492.2652.095.0
588.9431.0118.0
689.5714NaN127.0
\n", "
" ], "text/plain": [ " area age bashroom price\n", "0 88.54 5 1.0 118.0\n", "1 93.36 8 1.0 114.0\n", "2 98.90 13 2.0 102.0\n", "3 98.58 5 2.0 118.4\n", "4 92.26 5 2.0 95.0\n", "5 88.94 3 1.0 118.0\n", "6 89.57 14 NaN 127.0" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df#数据存在NaN,需要处理" ] }, { "cell_type": "markdown", "id": "8cab6f22", "metadata": {}, "source": [ "$$price = ax_1 + bx_2 + cx_3 + m$$" ] }, { "cell_type": "markdown", "id": "4087cc5f", "metadata": {}, "source": [ "## 1.数据处理" ] }, { "cell_type": "code", "execution_count": 6, "id": "cef313ea", "metadata": {}, "outputs": [], "source": [ "median = df.bashroom.median()" ] }, { "cell_type": "code", "execution_count": 9, "id": "f59d79bc", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1.5" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "median#卫生间没有小数,需要向下取整" ] }, { "cell_type": "code", "execution_count": 13, "id": "f49989d8", "metadata": {}, "outputs": [], "source": [ "df = df.fillna(np.floor(median))" ] }, { "cell_type": "code", "execution_count": 14, "id": "ee51756b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
areaagebashroomprice
088.5451.0118.0
193.3681.0114.0
298.90132.0102.0
398.5852.0118.4
492.2652.095.0
588.9431.0118.0
689.57141.0127.0
\n", "
" ], "text/plain": [ " area age bashroom price\n", "0 88.54 5 1.0 118.0\n", "1 93.36 8 1.0 114.0\n", "2 98.90 13 2.0 102.0\n", "3 98.58 5 2.0 118.4\n", "4 92.26 5 2.0 95.0\n", "5 88.94 3 1.0 118.0\n", "6 89.57 14 1.0 127.0" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "markdown", "id": "e41d72fc", "metadata": {}, "source": [ "## 2.训练模型" ] }, { "cell_type": "code", "execution_count": 20, "id": "39295dee", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "LinearRegression()" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model = LinearRegression()\n", "model.fit(df[[\"area\", \"age\", \"bashroom\"]].values, df.price.values)" ] }, { "cell_type": "markdown", "id": "c1b812cb", "metadata": {}, "source": [ "## 3.模型测试" ] }, { "cell_type": "code", "execution_count": 26, "id": "636c57cb", "metadata": {}, "outputs": [], "source": [ "pred = model.predict(np.array([[105, 2, 1]]))" ] }, { "cell_type": "code", "execution_count": 28, "id": "4928085a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([134.39931808])" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pred" ] }, { "cell_type": "code", "execution_count": 23, "id": "d6dea269", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 1.03253137, 0.04233053, -20.81194367])" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.coef_" ] }, { "cell_type": "code", "execution_count": 24, "id": "7cd87a3a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(1.032531365235341, 0.042330533476314436, -20.81194367389132)" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.coef_[0], model.coef_[1], model.coef_[2]" ] }, { "cell_type": "code", "execution_count": 25, "id": "a64c1cc5", "metadata": {}, "outputs": [], "source": [ "price = model.coef_[0] * 105 + model.coef_[1] * 2 + model.coef_[2]* 1 + model.intercept_" ] }, { "cell_type": "code", "execution_count": 29, "id": "c02a4f36", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "134.3993180794738" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "price" ] }, { "cell_type": "code", "execution_count": 27, "id": "862d7fab", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ True])" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "price == pred" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.9" } }, "nbformat": 4, "nbformat_minor": 5 }