{ "cells": [ { "cell_type": "code", "execution_count": 2, "id": "ae02d6c8", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from sklearn import linear_model" ] }, { "cell_type": "code", "execution_count": 3, "id": "6729b5ba", "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv(\"housing_price.csv\")" ] }, { "cell_type": "code", "execution_count": 4, "id": "717fda9f", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | area | \n", "price | \n", "
---|---|---|
0 | \n", "86.45 | \n", "117.0 | \n", "
1 | \n", "91.57 | \n", "98.0 | \n", "
2 | \n", "85.52 | \n", "114.0 | \n", "
3 | \n", "103.60 | \n", "146.0 | \n", "
4 | \n", "105.25 | \n", "106.0 | \n", "
5 | \n", "99.00 | \n", "109.0 | \n", "
6 | \n", "87.95 | \n", "91.5 | \n", "