{ "cells": [ { "cell_type": "code", "execution_count": 2, "id": "7d1db536", "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 3, "id": "76b100fc", "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv(\"carprices.csv\")" ] }, { "cell_type": "code", "execution_count": 6, "id": "806166f8", "metadata": {}, "outputs": [], "source": [ "df = df.drop(\"Car Model\", axis=\"columns\")" ] }, { "cell_type": "code", "execution_count": 8, "id": "1dfdbd5a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | Mileage | \n", "Sell Price($) | \n", "Age(yrs) | \n", "
---|---|---|---|
0 | \n", "69000 | \n", "18000 | \n", "6 | \n", "
1 | \n", "35000 | \n", "34000 | \n", "3 | \n", "
2 | \n", "57000 | \n", "26100 | \n", "5 | \n", "
3 | \n", "22500 | \n", "40000 | \n", "2 | \n", "
4 | \n", "46000 | \n", "31500 | \n", "4 | \n", "
5 | \n", "59000 | \n", "29400 | \n", "5 | \n", "
6 | \n", "52000 | \n", "32000 | \n", "5 | \n", "
7 | \n", "72000 | \n", "19300 | \n", "6 | \n", "
8 | \n", "91000 | \n", "12000 | \n", "8 | \n", "
9 | \n", "67000 | \n", "22000 | \n", "6 | \n", "
10 | \n", "83000 | \n", "20000 | \n", "7 | \n", "
11 | \n", "79000 | \n", "21000 | \n", "7 | \n", "
12 | \n", "59000 | \n", "33000 | \n", "5 | \n", "