You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

260 lines
5.1 KiB
Plaintext

6 months ago
{
"cells": [
{
"cell_type": "markdown",
"id": "f4893f14",
"metadata": {},
"source": [
"## 1.神经元"
]
},
{
"cell_type": "markdown",
"id": "94bf19cc",
"metadata": {},
"source": [
"<div>\n",
"<img src='nn1.jpg' width=45% align=left>\n",
"<img src='nn2.jpg' width=45% align=right>\n",
"</div>"
]
},
{
"cell_type": "markdown",
"id": "2be5b67b",
"metadata": {},
"source": [
"## 2.数学模型"
]
},
{
"cell_type": "markdown",
"id": "8033dba5",
"metadata": {},
"source": [
"<img src='math_nn.png' width=50% align=center>"
]
},
{
"cell_type": "markdown",
"id": "65adb74a",
"metadata": {},
"source": [
"## 3.Python代码"
]
},
{
"cell_type": "markdown",
"id": "a5a9e122",
"metadata": {},
"source": [
"### 3.1 一个数据,三个特征,一个神经元"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a59d2aed",
"metadata": {},
"outputs": [],
"source": [
"X = [1, 2, 3] #数据3\n",
"weight = [2, -1, 1] #权重\n",
"bias = 2#偏置"
]
},
{
"cell_type": "markdown",
"id": "72b0c310",
"metadata": {},
"source": [
"$$output = X[0] \\times weight[0] + X[1] \\times weight[1] + X[2] \\times weight[2] + bias$$"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "52612463",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"5"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"output = 0 \n",
"for x, w in zip(X, weight):\n",
" output += x * w\n",
"output += bias\n",
"output"
]
},
{
"cell_type": "markdown",
"id": "e7047e45",
"metadata": {},
"source": [
"### 3.2 一个数据,三个特征,二个神经元"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "276a5d16",
"metadata": {},
"outputs": [],
"source": [
"X = [1, 2, 3] #数据3\n",
"weight = [[2, -1, 1],\n",
" [2, 3, 1]] #权重\n",
"bias = [2, 3]#偏置"
]
},
{
"cell_type": "markdown",
"id": "88130792",
"metadata": {},
"source": [
"$$outputs[0] = X[0] \\times weight[0][0] + X[1] \\times weight[0][1] + X[2] \\times weight[0][2] + bias[0]$$\n",
"$$outputs[1] = X[0] \\times weight[1][0] + X[1] \\times weight[1][1] + X[2] \\times weight[1][2] + bias[1]$$"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "171cf7ed",
"metadata": {},
"outputs": [],
"source": [
"outputs = []\n",
"for n in range(len(weight)):\n",
" output = 0\n",
" for x, w in zip(X, weight[n]):\n",
" output += x * w#输入特征*权重\n",
" output += bias[n]#加上偏置\n",
" outputs.append(output)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "2b29da7e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[5, 14]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"outputs"
]
},
{
"cell_type": "markdown",
"id": "c5d44a2e",
"metadata": {},
"source": [
"### 3.3 三个数据,三个特征,二个神经元"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e789cbb0",
"metadata": {},
"outputs": [],
"source": [
"X = [[1, 2, 3],\n",
" [2, 3, 4],\n",
" [4, 5, 6]] #数据3 3\n",
"weight = [[2, -1, 1],\n",
" [2, 3, 1]] #权重\n",
"bias = [2, 3]#偏置"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "ec7c1216",
"metadata": {},
"outputs": [],
"source": [
"n_outputs = []\n",
"for i in range(len(X)):\n",
" outputs = []\n",
" for n in range(len(weight)):\n",
" output = 0\n",
" for x, w in zip(X[i], weight[n]):\n",
" output += x * w#输入特征*权重\n",
" output += bias[n]#加上偏置\n",
" outputs.append(output)\n",
" n_outputs.append(outputs)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "47bdc39b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[[5, 14], [7, 20], [11, 32]]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"n_outputs"
]
},
{
"cell_type": "markdown",
"id": "08742560",
"metadata": {},
"source": [
"作业请写出n_outputsXweight的计算"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}