You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

304 lines
6.1 KiB
Plaintext

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "92a1159e",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "6306fef2",
"metadata": {},
"outputs": [],
"source": [
"X = [1, 2, 3] #数据3\n",
"weight = [2, -1, 1] #权重\n",
"bias = 2#偏置"
]
},
{
"cell_type": "markdown",
"id": "c71760e7",
"metadata": {},
"source": [
"转成ndarray"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "6ad946d7",
"metadata": {},
"outputs": [],
"source": [
"X = np.array(X)\n",
"weight = np.array(weight)\n",
"bias = np.array(bias)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "ad1fd582",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"((3,), (3,), ())"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X.shape, weight.shape, bias.shape"
]
},
{
"cell_type": "markdown",
"id": "1e81245b",
"metadata": {},
"source": [
"向量点成"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "795bd2f0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(3, 3)"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.dot(X, weight), np.dot(weight, X)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "6c087a5a",
"metadata": {},
"outputs": [],
"source": [
"output = np.dot(X, weight) + bias"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "6d64a1bc",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"5"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"output"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "6f7fc0e1",
"metadata": {},
"outputs": [],
"source": [
"X = [1, 2, 3] #数据3\n",
"weight = [[2, -1, 1],\n",
" [2, 3, 1]] #权重\n",
"bias = [2, 3]#偏置"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "c4bbb7a6",
"metadata": {},
"outputs": [],
"source": [
"X = np.array(X)\n",
"weight = np.array(weight)\n",
"bias = np.array(bias)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "1ce4b03a",
"metadata": {},
"outputs": [],
"source": [
"output = np.dot(weight, X) + bias"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "f76ed5a0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 5, 14])"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"output"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "d83e4284",
"metadata": {},
"outputs": [],
"source": [
"X = [[1, 2, 3],\n",
" [2, 3, 4],\n",
" [4, 5, 6]] #数据3 3\n",
"weight = [[2, -1, 1],\n",
" [2, 3, 1]] #权重\n",
"bias = [[2, 3]]#偏置"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "75e715a9",
"metadata": {},
"outputs": [],
"source": [
"X = np.array(X)\n",
"weight = np.array(weight)\n",
"bias = np.array(bias)"
]
},
{
"cell_type": "markdown",
"id": "c397fd32",
"metadata": {},
"source": [
"对于多个数据,还是和上面使用同样的点乘是不行的。一定要注意数据的维度。"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "ab7fe33a",
"metadata": {},
"outputs": [
{
"ename": "ValueError",
"evalue": "shapes (3,3) and (2,3) not aligned: 3 (dim 1) != 2 (dim 0)",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_1764\\268821979.py\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0moutput\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mweight\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0mbias\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[1;32m<__array_function__ internals>\u001b[0m in \u001b[0;36mdot\u001b[1;34m(*args, **kwargs)\u001b[0m\n",
"\u001b[1;31mValueError\u001b[0m: shapes (3,3) and (2,3) not aligned: 3 (dim 1) != 2 (dim 0)"
]
}
],
"source": [
"output = np.dot(X, weight) + bias"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "844d2afe",
"metadata": {},
"outputs": [],
"source": [
"output = np.dot(X, weight.T) + bias"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "5e945d68",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 5, 14],\n",
" [ 7, 20],\n",
" [11, 32]])"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"output"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c71f101e",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}