You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
449 lines
18 KiB
Python
449 lines
18 KiB
Python
3 weeks ago
|
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||
|
"""Image augmentation functions."""
|
||
|
|
||
|
import math
|
||
|
import random
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import torchvision.transforms as T
|
||
|
import torchvision.transforms.functional as TF
|
||
|
|
||
|
from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box, xywhn2xyxy
|
||
|
from utils.metrics import bbox_ioa
|
||
|
|
||
|
IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean
|
||
|
IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation
|
||
|
|
||
|
|
||
|
class Albumentations:
|
||
|
"""Provides optional data augmentation for YOLOv5 using Albumentations library if installed."""
|
||
|
|
||
|
def __init__(self, size=640):
|
||
|
"""Initializes Albumentations class for optional data augmentation in YOLOv5 with specified input size."""
|
||
|
self.transform = None
|
||
|
prefix = colorstr("albumentations: ")
|
||
|
try:
|
||
|
import albumentations as A
|
||
|
|
||
|
check_version(A.__version__, "1.0.3", hard=True) # version requirement
|
||
|
|
||
|
T = [
|
||
|
A.RandomResizedCrop(height=size, width=size, scale=(0.8, 1.0), ratio=(0.9, 1.11), p=0.0),
|
||
|
A.Blur(p=0.01),
|
||
|
A.MedianBlur(p=0.01),
|
||
|
A.ToGray(p=0.01),
|
||
|
A.CLAHE(p=0.01),
|
||
|
A.RandomBrightnessContrast(p=0.0),
|
||
|
A.RandomGamma(p=0.0),
|
||
|
A.ImageCompression(quality_lower=75, p=0.0),
|
||
|
] # transforms
|
||
|
self.transform = A.Compose(T, bbox_params=A.BboxParams(format="yolo", label_fields=["class_labels"]))
|
||
|
|
||
|
LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p))
|
||
|
except ImportError: # package not installed, skip
|
||
|
pass
|
||
|
except Exception as e:
|
||
|
LOGGER.info(f"{prefix}{e}")
|
||
|
|
||
|
def __call__(self, im, labels, p=1.0):
|
||
|
"""Applies transformations to an image and labels with probability `p`, returning updated image and labels."""
|
||
|
if self.transform and random.random() < p:
|
||
|
new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed
|
||
|
im, labels = new["image"], np.array([[c, *b] for c, b in zip(new["class_labels"], new["bboxes"])])
|
||
|
return im, labels
|
||
|
|
||
|
|
||
|
def normalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD, inplace=False):
|
||
|
"""
|
||
|
Applies ImageNet normalization to RGB images in BCHW format, modifying them in-place if specified.
|
||
|
|
||
|
Example: y = (x - mean) / std
|
||
|
"""
|
||
|
return TF.normalize(x, mean, std, inplace=inplace)
|
||
|
|
||
|
|
||
|
def denormalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD):
|
||
|
"""Reverses ImageNet normalization for BCHW format RGB images by applying `x = x * std + mean`."""
|
||
|
for i in range(3):
|
||
|
x[:, i] = x[:, i] * std[i] + mean[i]
|
||
|
return x
|
||
|
|
||
|
|
||
|
def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
|
||
|
"""Applies HSV color-space augmentation to an image with random gains for hue, saturation, and value."""
|
||
|
if hgain or sgain or vgain:
|
||
|
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
|
||
|
hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
|
||
|
dtype = im.dtype # uint8
|
||
|
|
||
|
x = np.arange(0, 256, dtype=r.dtype)
|
||
|
lut_hue = ((x * r[0]) % 180).astype(dtype)
|
||
|
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
|
||
|
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
|
||
|
|
||
|
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
|
||
|
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed
|
||
|
|
||
|
|
||
|
def hist_equalize(im, clahe=True, bgr=False):
|
||
|
"""Equalizes image histogram, with optional CLAHE, for BGR or RGB image with shape (n,m,3) and range 0-255."""
|
||
|
yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
|
||
|
if clahe:
|
||
|
c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
||
|
yuv[:, :, 0] = c.apply(yuv[:, :, 0])
|
||
|
else:
|
||
|
yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
|
||
|
return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
|
||
|
|
||
|
|
||
|
def replicate(im, labels):
|
||
|
"""
|
||
|
Replicates half of the smallest object labels in an image for data augmentation.
|
||
|
|
||
|
Returns augmented image and labels.
|
||
|
"""
|
||
|
h, w = im.shape[:2]
|
||
|
boxes = labels[:, 1:].astype(int)
|
||
|
x1, y1, x2, y2 = boxes.T
|
||
|
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
|
||
|
for i in s.argsort()[: round(s.size * 0.5)]: # smallest indices
|
||
|
x1b, y1b, x2b, y2b = boxes[i]
|
||
|
bh, bw = y2b - y1b, x2b - x1b
|
||
|
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
|
||
|
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
|
||
|
im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] # im4[ymin:ymax, xmin:xmax]
|
||
|
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
|
||
|
|
||
|
return im, labels
|
||
|
|
||
|
|
||
|
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
|
||
|
"""Resizes and pads image to new_shape with stride-multiple constraints, returns resized image, ratio, padding."""
|
||
|
shape = im.shape[:2] # current shape [height, width]
|
||
|
if isinstance(new_shape, int):
|
||
|
new_shape = (new_shape, new_shape)
|
||
|
|
||
|
# Scale ratio (new / old)
|
||
|
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
||
|
if not scaleup: # only scale down, do not scale up (for better val mAP)
|
||
|
r = min(r, 1.0)
|
||
|
|
||
|
# Compute padding
|
||
|
ratio = r, r # width, height ratios
|
||
|
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
||
|
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
||
|
if auto: # minimum rectangle
|
||
|
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
||
|
elif scaleFill: # stretch
|
||
|
dw, dh = 0.0, 0.0
|
||
|
new_unpad = (new_shape[1], new_shape[0])
|
||
|
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
||
|
|
||
|
dw /= 2 # divide padding into 2 sides
|
||
|
dh /= 2
|
||
|
|
||
|
if shape[::-1] != new_unpad: # resize
|
||
|
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
|
||
|
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
||
|
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
||
|
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
||
|
return im, ratio, (dw, dh)
|
||
|
|
||
|
|
||
|
def random_perspective(
|
||
|
im, targets=(), segments=(), degrees=10, translate=0.1, scale=0.1, shear=10, perspective=0.0, border=(0, 0)
|
||
|
):
|
||
|
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
|
||
|
# targets = [cls, xyxy]
|
||
|
"""Applies random perspective transformation to an image, modifying the image and corresponding labels."""
|
||
|
height = im.shape[0] + border[0] * 2 # shape(h,w,c)
|
||
|
width = im.shape[1] + border[1] * 2
|
||
|
|
||
|
# Center
|
||
|
C = np.eye(3)
|
||
|
C[0, 2] = -im.shape[1] / 2 # x translation (pixels)
|
||
|
C[1, 2] = -im.shape[0] / 2 # y translation (pixels)
|
||
|
|
||
|
# Perspective
|
||
|
P = np.eye(3)
|
||
|
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
|
||
|
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
|
||
|
|
||
|
# Rotation and Scale
|
||
|
R = np.eye(3)
|
||
|
a = random.uniform(-degrees, degrees)
|
||
|
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
||
|
s = random.uniform(1 - scale, 1 + scale)
|
||
|
# s = 2 ** random.uniform(-scale, scale)
|
||
|
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
||
|
|
||
|
# Shear
|
||
|
S = np.eye(3)
|
||
|
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
|
||
|
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
|
||
|
|
||
|
# Translation
|
||
|
T = np.eye(3)
|
||
|
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
|
||
|
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
|
||
|
|
||
|
# Combined rotation matrix
|
||
|
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
|
||
|
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
||
|
if perspective:
|
||
|
im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
|
||
|
else: # affine
|
||
|
im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
|
||
|
|
||
|
# Visualize
|
||
|
# import matplotlib.pyplot as plt
|
||
|
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
|
||
|
# ax[0].imshow(im[:, :, ::-1]) # base
|
||
|
# ax[1].imshow(im2[:, :, ::-1]) # warped
|
||
|
|
||
|
# Transform label coordinates
|
||
|
n = len(targets)
|
||
|
if n:
|
||
|
use_segments = any(x.any() for x in segments) and len(segments) == n
|
||
|
new = np.zeros((n, 4))
|
||
|
if use_segments: # warp segments
|
||
|
segments = resample_segments(segments) # upsample
|
||
|
for i, segment in enumerate(segments):
|
||
|
xy = np.ones((len(segment), 3))
|
||
|
xy[:, :2] = segment
|
||
|
xy = xy @ M.T # transform
|
||
|
xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
|
||
|
|
||
|
# clip
|
||
|
new[i] = segment2box(xy, width, height)
|
||
|
|
||
|
else: # warp boxes
|
||
|
xy = np.ones((n * 4, 3))
|
||
|
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
|
||
|
xy = xy @ M.T # transform
|
||
|
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
|
||
|
|
||
|
# create new boxes
|
||
|
x = xy[:, [0, 2, 4, 6]]
|
||
|
y = xy[:, [1, 3, 5, 7]]
|
||
|
new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
||
|
|
||
|
# clip
|
||
|
new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
|
||
|
new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
|
||
|
|
||
|
# filter candidates
|
||
|
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
|
||
|
targets = targets[i]
|
||
|
targets[:, 1:5] = new[i]
|
||
|
|
||
|
return im, targets
|
||
|
|
||
|
|
||
|
def copy_paste(im, labels, segments, p=0.5):
|
||
|
"""
|
||
|
Applies Copy-Paste augmentation by flipping and merging segments and labels on an image.
|
||
|
|
||
|
Details at https://arxiv.org/abs/2012.07177.
|
||
|
"""
|
||
|
n = len(segments)
|
||
|
if p and n:
|
||
|
h, w, c = im.shape # height, width, channels
|
||
|
im_new = np.zeros(im.shape, np.uint8)
|
||
|
for j in random.sample(range(n), k=round(p * n)):
|
||
|
l, s = labels[j], segments[j]
|
||
|
box = w - l[3], l[2], w - l[1], l[4]
|
||
|
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
|
||
|
if (ioa < 0.30).all(): # allow 30% obscuration of existing labels
|
||
|
labels = np.concatenate((labels, [[l[0], *box]]), 0)
|
||
|
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
|
||
|
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (1, 1, 1), cv2.FILLED)
|
||
|
|
||
|
result = cv2.flip(im, 1) # augment segments (flip left-right)
|
||
|
i = cv2.flip(im_new, 1).astype(bool)
|
||
|
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
|
||
|
|
||
|
return im, labels, segments
|
||
|
|
||
|
|
||
|
def cutout(im, labels, p=0.5):
|
||
|
"""
|
||
|
Applies cutout augmentation to an image with optional label adjustment, using random masks of varying sizes.
|
||
|
|
||
|
Details at https://arxiv.org/abs/1708.04552.
|
||
|
"""
|
||
|
if random.random() < p:
|
||
|
h, w = im.shape[:2]
|
||
|
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
|
||
|
for s in scales:
|
||
|
mask_h = random.randint(1, int(h * s)) # create random masks
|
||
|
mask_w = random.randint(1, int(w * s))
|
||
|
|
||
|
# box
|
||
|
xmin = max(0, random.randint(0, w) - mask_w // 2)
|
||
|
ymin = max(0, random.randint(0, h) - mask_h // 2)
|
||
|
xmax = min(w, xmin + mask_w)
|
||
|
ymax = min(h, ymin + mask_h)
|
||
|
|
||
|
# apply random color mask
|
||
|
im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
|
||
|
|
||
|
# return unobscured labels
|
||
|
if len(labels) and s > 0.03:
|
||
|
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
|
||
|
ioa = bbox_ioa(box, xywhn2xyxy(labels[:, 1:5], w, h)) # intersection over area
|
||
|
labels = labels[ioa < 0.60] # remove >60% obscured labels
|
||
|
|
||
|
return labels
|
||
|
|
||
|
|
||
|
def mixup(im, labels, im2, labels2):
|
||
|
"""
|
||
|
Applies MixUp augmentation by blending images and labels.
|
||
|
|
||
|
See https://arxiv.org/pdf/1710.09412.pdf for details.
|
||
|
"""
|
||
|
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
|
||
|
im = (im * r + im2 * (1 - r)).astype(np.uint8)
|
||
|
labels = np.concatenate((labels, labels2), 0)
|
||
|
return im, labels
|
||
|
|
||
|
|
||
|
def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16):
|
||
|
"""
|
||
|
Filters bounding box candidates by minimum width-height threshold `wh_thr` (pixels), aspect ratio threshold
|
||
|
`ar_thr`, and area ratio threshold `area_thr`.
|
||
|
|
||
|
box1(4,n) is before augmentation, box2(4,n) is after augmentation.
|
||
|
"""
|
||
|
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
||
|
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
||
|
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
|
||
|
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
|
||
|
|
||
|
|
||
|
def classify_albumentations(
|
||
|
augment=True,
|
||
|
size=224,
|
||
|
scale=(0.08, 1.0),
|
||
|
ratio=(0.75, 1.0 / 0.75), # 0.75, 1.33
|
||
|
hflip=0.5,
|
||
|
vflip=0.0,
|
||
|
jitter=0.4,
|
||
|
mean=IMAGENET_MEAN,
|
||
|
std=IMAGENET_STD,
|
||
|
auto_aug=False,
|
||
|
):
|
||
|
# YOLOv5 classification Albumentations (optional, only used if package is installed)
|
||
|
"""Sets up and returns Albumentations transforms for YOLOv5 classification tasks depending on augmentation
|
||
|
settings.
|
||
|
"""
|
||
|
prefix = colorstr("albumentations: ")
|
||
|
try:
|
||
|
import albumentations as A
|
||
|
from albumentations.pytorch import ToTensorV2
|
||
|
|
||
|
check_version(A.__version__, "1.0.3", hard=True) # version requirement
|
||
|
if augment: # Resize and crop
|
||
|
T = [A.RandomResizedCrop(height=size, width=size, scale=scale, ratio=ratio)]
|
||
|
if auto_aug:
|
||
|
# TODO: implement AugMix, AutoAug & RandAug in albumentation
|
||
|
LOGGER.info(f"{prefix}auto augmentations are currently not supported")
|
||
|
else:
|
||
|
if hflip > 0:
|
||
|
T += [A.HorizontalFlip(p=hflip)]
|
||
|
if vflip > 0:
|
||
|
T += [A.VerticalFlip(p=vflip)]
|
||
|
if jitter > 0:
|
||
|
color_jitter = (float(jitter),) * 3 # repeat value for brightness, contrast, saturation, 0 hue
|
||
|
T += [A.ColorJitter(*color_jitter, 0)]
|
||
|
else: # Use fixed crop for eval set (reproducibility)
|
||
|
T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)]
|
||
|
T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor
|
||
|
LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p))
|
||
|
return A.Compose(T)
|
||
|
|
||
|
except ImportError: # package not installed, skip
|
||
|
LOGGER.warning(f"{prefix}⚠️ not found, install with `pip install albumentations` (recommended)")
|
||
|
except Exception as e:
|
||
|
LOGGER.info(f"{prefix}{e}")
|
||
|
|
||
|
|
||
|
def classify_transforms(size=224):
|
||
|
"""Applies a series of transformations including center crop, ToTensor, and normalization for classification."""
|
||
|
assert isinstance(size, int), f"ERROR: classify_transforms size {size} must be integer, not (list, tuple)"
|
||
|
# T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
|
||
|
return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
|
||
|
|
||
|
|
||
|
class LetterBox:
|
||
|
"""Resizes and pads images to specified dimensions while maintaining aspect ratio for YOLOv5 preprocessing."""
|
||
|
|
||
|
def __init__(self, size=(640, 640), auto=False, stride=32):
|
||
|
"""Initializes a LetterBox object for YOLOv5 image preprocessing with optional auto sizing and stride
|
||
|
adjustment.
|
||
|
"""
|
||
|
super().__init__()
|
||
|
self.h, self.w = (size, size) if isinstance(size, int) else size
|
||
|
self.auto = auto # pass max size integer, automatically solve for short side using stride
|
||
|
self.stride = stride # used with auto
|
||
|
|
||
|
def __call__(self, im):
|
||
|
"""
|
||
|
Resizes and pads input image `im` (HWC format) to specified dimensions, maintaining aspect ratio.
|
||
|
|
||
|
im = np.array HWC
|
||
|
"""
|
||
|
imh, imw = im.shape[:2]
|
||
|
r = min(self.h / imh, self.w / imw) # ratio of new/old
|
||
|
h, w = round(imh * r), round(imw * r) # resized image
|
||
|
hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w
|
||
|
top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1)
|
||
|
im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype)
|
||
|
im_out[top : top + h, left : left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
|
||
|
return im_out
|
||
|
|
||
|
|
||
|
class CenterCrop:
|
||
|
"""Applies center crop to an image, resizing it to the specified size while maintaining aspect ratio."""
|
||
|
|
||
|
def __init__(self, size=640):
|
||
|
"""Initializes CenterCrop for image preprocessing, accepting single int or tuple for size, defaults to 640."""
|
||
|
super().__init__()
|
||
|
self.h, self.w = (size, size) if isinstance(size, int) else size
|
||
|
|
||
|
def __call__(self, im):
|
||
|
"""
|
||
|
Applies center crop to the input image and resizes it to a specified size, maintaining aspect ratio.
|
||
|
|
||
|
im = np.array HWC
|
||
|
"""
|
||
|
imh, imw = im.shape[:2]
|
||
|
m = min(imh, imw) # min dimension
|
||
|
top, left = (imh - m) // 2, (imw - m) // 2
|
||
|
return cv2.resize(im[top : top + m, left : left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR)
|
||
|
|
||
|
|
||
|
class ToTensor:
|
||
|
"""Converts BGR np.array image from HWC to RGB CHW format, normalizes to [0, 1], and supports FP16 if half=True."""
|
||
|
|
||
|
def __init__(self, half=False):
|
||
|
"""Initializes ToTensor for YOLOv5 image preprocessing, with optional half precision (half=True for FP16)."""
|
||
|
super().__init__()
|
||
|
self.half = half
|
||
|
|
||
|
def __call__(self, im):
|
||
|
"""
|
||
|
Converts BGR np.array image from HWC to RGB CHW format, and normalizes to [0, 1], with support for FP16 if
|
||
|
`half=True`.
|
||
|
|
||
|
im = np.array HWC in BGR order
|
||
|
"""
|
||
|
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous
|
||
|
im = torch.from_numpy(im) # to torch
|
||
|
im = im.half() if self.half else im.float() # uint8 to fp16/32
|
||
|
im /= 255.0 # 0-255 to 0.0-1.0
|
||
|
return im
|