You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

211 lines
8.0 KiB
Python

3 weeks ago
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
# WARNING ⚠️ wandb is deprecated and will be removed in future release.
# See supported integrations at https://github.com/ultralytics/yolov5#integrations
import logging
import os
import sys
from contextlib import contextmanager
from pathlib import Path
from utils.general import LOGGER, colorstr
FILE = Path(__file__).resolve()
ROOT = FILE.parents[3] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
RANK = int(os.getenv("RANK", -1))
DEPRECATION_WARNING = (
f"{colorstr('wandb')}: WARNING ⚠️ wandb is deprecated and will be removed in a future release. "
f'See supported integrations at https://github.com/ultralytics/yolov5#integrations.'
)
try:
import wandb
assert hasattr(wandb, "__version__") # verify package import not local dir
LOGGER.warning(DEPRECATION_WARNING)
except (ImportError, AssertionError):
wandb = None
class WandbLogger:
"""
Log training runs, datasets, models, and predictions to Weights & Biases.
This logger sends information to W&B at wandb.ai. By default, this information includes hyperparameters, system
configuration and metrics, model metrics, and basic data metrics and analyses.
By providing additional command line arguments to train.py, datasets, models and predictions can also be logged.
For more on how this logger is used, see the Weights & Biases documentation:
https://docs.wandb.com/guides/integrations/yolov5
"""
def __init__(self, opt, run_id=None, job_type="Training"):
"""
- Initialize WandbLogger instance
- Upload dataset if opt.upload_dataset is True
- Setup training processes if job_type is 'Training'.
Arguments:
opt (namespace) -- Commandline arguments for this run
run_id (str) -- Run ID of W&B run to be resumed
job_type (str) -- To set the job_type for this run
"""
# Pre-training routine --
self.job_type = job_type
self.wandb, self.wandb_run = wandb, wandb.run if wandb else None
self.val_artifact, self.train_artifact = None, None
self.train_artifact_path, self.val_artifact_path = None, None
self.result_artifact = None
self.val_table, self.result_table = None, None
self.max_imgs_to_log = 16
self.data_dict = None
if self.wandb:
self.wandb_run = wandb.run or wandb.init(
config=opt,
resume="allow",
project="YOLOv5" if opt.project == "runs/train" else Path(opt.project).stem,
entity=opt.entity,
name=opt.name if opt.name != "exp" else None,
job_type=job_type,
id=run_id,
allow_val_change=True,
)
if self.wandb_run and self.job_type == "Training":
if isinstance(opt.data, dict):
# This means another dataset manager has already processed the dataset info (e.g. ClearML)
# and they will have stored the already processed dict in opt.data
self.data_dict = opt.data
self.setup_training(opt)
def setup_training(self, opt):
"""
Setup the necessary processes for training YOLO models:
- Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
- Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
- Setup log_dict, initialize bbox_interval.
Arguments:
opt (namespace) -- commandline arguments for this run
"""
self.log_dict, self.current_epoch = {}, 0
self.bbox_interval = opt.bbox_interval
if isinstance(opt.resume, str):
model_dir, _ = self.download_model_artifact(opt)
if model_dir:
self.weights = Path(model_dir) / "last.pt"
config = self.wandb_run.config
opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp, opt.imgsz = (
str(self.weights),
config.save_period,
config.batch_size,
config.bbox_interval,
config.epochs,
config.hyp,
config.imgsz,
)
if opt.bbox_interval == -1:
self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
if opt.evolve or opt.noplots:
self.bbox_interval = opt.bbox_interval = opt.epochs + 1 # disable bbox_interval
def log_model(self, path, opt, epoch, fitness_score, best_model=False):
"""
Log the model checkpoint as W&B artifact.
Arguments:
path (Path) -- Path of directory containing the checkpoints
opt (namespace) -- Command line arguments for this run
epoch (int) -- Current epoch number
fitness_score (float) -- fitness score for current epoch
best_model (boolean) -- Boolean representing if the current checkpoint is the best yet.
"""
model_artifact = wandb.Artifact(
f"run_{wandb.run.id}_model",
type="model",
metadata={
"original_url": str(path),
"epochs_trained": epoch + 1,
"save period": opt.save_period,
"project": opt.project,
"total_epochs": opt.epochs,
"fitness_score": fitness_score,
},
)
model_artifact.add_file(str(path / "last.pt"), name="last.pt")
wandb.log_artifact(
model_artifact,
aliases=[
"latest",
"last",
f"epoch {str(self.current_epoch)}",
"best" if best_model else "",
],
)
LOGGER.info(f"Saving model artifact on epoch {epoch + 1}")
def val_one_image(self, pred, predn, path, names, im):
"""Evaluates model prediction for a single image, returning metrics and visualizations."""
pass
def log(self, log_dict):
"""
Save the metrics to the logging dictionary.
Arguments:
log_dict (Dict) -- metrics/media to be logged in current step
"""
if self.wandb_run:
for key, value in log_dict.items():
self.log_dict[key] = value
def end_epoch(self):
"""
Commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
Arguments:
best_result (boolean): Boolean representing if the result of this evaluation is best or not
"""
if self.wandb_run:
with all_logging_disabled():
try:
wandb.log(self.log_dict)
except BaseException as e:
LOGGER.info(
f"An error occurred in wandb logger. The training will proceed without interruption. More info\n{e}"
)
self.wandb_run.finish()
self.wandb_run = None
self.log_dict = {}
def finish_run(self):
"""Log metrics if any and finish the current W&B run."""
if self.wandb_run:
if self.log_dict:
with all_logging_disabled():
wandb.log(self.log_dict)
wandb.run.finish()
LOGGER.warning(DEPRECATION_WARNING)
@contextmanager
def all_logging_disabled(highest_level=logging.CRITICAL):
"""Source - https://gist.github.com/simon-weber/7853144
A context manager that will prevent any logging messages triggered during the body from being processed.
:param highest_level: the maximum logging level in use.
This would only need to be changed if a custom level greater than CRITICAL is defined.
"""
previous_level = logging.root.manager.disable
logging.disable(highest_level)
try:
yield
finally:
logging.disable(previous_level)