You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
295 lines
14 KiB
Python
295 lines
14 KiB
Python
3 weeks ago
|
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||
|
"""
|
||
|
Run YOLOv5 benchmarks on all supported export formats.
|
||
|
|
||
|
Format | `export.py --include` | Model
|
||
|
--- | --- | ---
|
||
|
PyTorch | - | yolov5s.pt
|
||
|
TorchScript | `torchscript` | yolov5s.torchscript
|
||
|
ONNX | `onnx` | yolov5s.onnx
|
||
|
OpenVINO | `openvino` | yolov5s_openvino_model/
|
||
|
TensorRT | `engine` | yolov5s.engine
|
||
|
CoreML | `coreml` | yolov5s.mlpackage
|
||
|
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
|
||
|
TensorFlow GraphDef | `pb` | yolov5s.pb
|
||
|
TensorFlow Lite | `tflite` | yolov5s.tflite
|
||
|
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
|
||
|
TensorFlow.js | `tfjs` | yolov5s_web_model/
|
||
|
|
||
|
Requirements:
|
||
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
|
||
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
|
||
|
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
|
||
|
|
||
|
Usage:
|
||
|
$ python benchmarks.py --weights yolov5s.pt --img 640
|
||
|
"""
|
||
|
|
||
|
import argparse
|
||
|
import platform
|
||
|
import sys
|
||
|
import time
|
||
|
from pathlib import Path
|
||
|
|
||
|
import pandas as pd
|
||
|
|
||
|
FILE = Path(__file__).resolve()
|
||
|
ROOT = FILE.parents[0] # YOLOv5 root directory
|
||
|
if str(ROOT) not in sys.path:
|
||
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||
|
# ROOT = ROOT.relative_to(Path.cwd()) # relative
|
||
|
|
||
|
import export
|
||
|
from models.experimental import attempt_load
|
||
|
from models.yolo import SegmentationModel
|
||
|
from segment.val import run as val_seg
|
||
|
from utils import notebook_init
|
||
|
from utils.general import LOGGER, check_yaml, file_size, print_args
|
||
|
from utils.torch_utils import select_device
|
||
|
from val import run as val_det
|
||
|
|
||
|
|
||
|
def run(
|
||
|
weights=ROOT / "yolov5s.pt", # weights path
|
||
|
imgsz=640, # inference size (pixels)
|
||
|
batch_size=1, # batch size
|
||
|
data=ROOT / "data/coco128.yaml", # dataset.yaml path
|
||
|
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||
|
half=False, # use FP16 half-precision inference
|
||
|
test=False, # test exports only
|
||
|
pt_only=False, # test PyTorch only
|
||
|
hard_fail=False, # throw error on benchmark failure
|
||
|
):
|
||
|
"""
|
||
|
Run YOLOv5 benchmarks on multiple export formats and log results for model performance evaluation.
|
||
|
|
||
|
Args:
|
||
|
weights (Path | str): Path to the model weights file (default: ROOT / "yolov5s.pt").
|
||
|
imgsz (int): Inference size in pixels (default: 640).
|
||
|
batch_size (int): Batch size for inference (default: 1).
|
||
|
data (Path | str): Path to the dataset.yaml file (default: ROOT / "data/coco128.yaml").
|
||
|
device (str): CUDA device, e.g., '0' or '0,1,2,3' or 'cpu' (default: "").
|
||
|
half (bool): Use FP16 half-precision inference (default: False).
|
||
|
test (bool): Test export formats only (default: False).
|
||
|
pt_only (bool): Test PyTorch format only (default: False).
|
||
|
hard_fail (bool): Throw an error on benchmark failure if True (default: False).
|
||
|
|
||
|
Returns:
|
||
|
None. Logs information about the benchmark results, including the format, size, mAP50-95, and inference time.
|
||
|
|
||
|
Notes:
|
||
|
Supported export formats and models include PyTorch, TorchScript, ONNX, OpenVINO, TensorRT, CoreML,
|
||
|
TensorFlow SavedModel, TensorFlow GraphDef, TensorFlow Lite, and TensorFlow Edge TPU. Edge TPU and TF.js
|
||
|
are unsupported.
|
||
|
|
||
|
Example:
|
||
|
```python
|
||
|
$ python benchmarks.py --weights yolov5s.pt --img 640
|
||
|
```
|
||
|
|
||
|
Usage:
|
||
|
Install required packages:
|
||
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU support
|
||
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU support
|
||
|
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
|
||
|
|
||
|
Run benchmarks:
|
||
|
$ python benchmarks.py --weights yolov5s.pt --img 640
|
||
|
"""
|
||
|
y, t = [], time.time()
|
||
|
device = select_device(device)
|
||
|
model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc.
|
||
|
for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
|
||
|
try:
|
||
|
assert i not in (9, 10), "inference not supported" # Edge TPU and TF.js are unsupported
|
||
|
assert i != 5 or platform.system() == "Darwin", "inference only supported on macOS>=10.13" # CoreML
|
||
|
if "cpu" in device.type:
|
||
|
assert cpu, "inference not supported on CPU"
|
||
|
if "cuda" in device.type:
|
||
|
assert gpu, "inference not supported on GPU"
|
||
|
|
||
|
# Export
|
||
|
if f == "-":
|
||
|
w = weights # PyTorch format
|
||
|
else:
|
||
|
w = export.run(
|
||
|
weights=weights, imgsz=[imgsz], include=[f], batch_size=batch_size, device=device, half=half
|
||
|
)[-1] # all others
|
||
|
assert suffix in str(w), "export failed"
|
||
|
|
||
|
# Validate
|
||
|
if model_type == SegmentationModel:
|
||
|
result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half)
|
||
|
metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
|
||
|
else: # DetectionModel:
|
||
|
result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half)
|
||
|
metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls))
|
||
|
speed = result[2][1] # times (preprocess, inference, postprocess)
|
||
|
y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference
|
||
|
except Exception as e:
|
||
|
if hard_fail:
|
||
|
assert type(e) is AssertionError, f"Benchmark --hard-fail for {name}: {e}"
|
||
|
LOGGER.warning(f"WARNING ⚠️ Benchmark failure for {name}: {e}")
|
||
|
y.append([name, None, None, None]) # mAP, t_inference
|
||
|
if pt_only and i == 0:
|
||
|
break # break after PyTorch
|
||
|
|
||
|
# Print results
|
||
|
LOGGER.info("\n")
|
||
|
parse_opt()
|
||
|
notebook_init() # print system info
|
||
|
c = ["Format", "Size (MB)", "mAP50-95", "Inference time (ms)"] if map else ["Format", "Export", "", ""]
|
||
|
py = pd.DataFrame(y, columns=c)
|
||
|
LOGGER.info(f"\nBenchmarks complete ({time.time() - t:.2f}s)")
|
||
|
LOGGER.info(str(py if map else py.iloc[:, :2]))
|
||
|
if hard_fail and isinstance(hard_fail, str):
|
||
|
metrics = py["mAP50-95"].array # values to compare to floor
|
||
|
floor = eval(hard_fail) # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
|
||
|
assert all(x > floor for x in metrics if pd.notna(x)), f"HARD FAIL: mAP50-95 < floor {floor}"
|
||
|
return py
|
||
|
|
||
|
|
||
|
def test(
|
||
|
weights=ROOT / "yolov5s.pt", # weights path
|
||
|
imgsz=640, # inference size (pixels)
|
||
|
batch_size=1, # batch size
|
||
|
data=ROOT / "data/coco128.yaml", # dataset.yaml path
|
||
|
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||
|
half=False, # use FP16 half-precision inference
|
||
|
test=False, # test exports only
|
||
|
pt_only=False, # test PyTorch only
|
||
|
hard_fail=False, # throw error on benchmark failure
|
||
|
):
|
||
|
"""
|
||
|
Run YOLOv5 export tests for all supported formats and log the results, including export statuses.
|
||
|
|
||
|
Args:
|
||
|
weights (Path | str): Path to the model weights file (.pt format). Default is 'ROOT / "yolov5s.pt"'.
|
||
|
imgsz (int): Inference image size (in pixels). Default is 640.
|
||
|
batch_size (int): Batch size for testing. Default is 1.
|
||
|
data (Path | str): Path to the dataset configuration file (.yaml format). Default is 'ROOT / "data/coco128.yaml"'.
|
||
|
device (str): Device for running the tests, can be 'cpu' or a specific CUDA device ('0', '0,1,2,3', etc.). Default is an empty string.
|
||
|
half (bool): Use FP16 half-precision for inference if True. Default is False.
|
||
|
test (bool): Test export formats only without running inference. Default is False.
|
||
|
pt_only (bool): Test only the PyTorch model if True. Default is False.
|
||
|
hard_fail (bool): Raise error on export or test failure if True. Default is False.
|
||
|
|
||
|
Returns:
|
||
|
pd.DataFrame: DataFrame containing the results of the export tests, including format names and export statuses.
|
||
|
|
||
|
Examples:
|
||
|
```python
|
||
|
$ python benchmarks.py --weights yolov5s.pt --img 640
|
||
|
```
|
||
|
|
||
|
Notes:
|
||
|
Supported export formats and models include PyTorch, TorchScript, ONNX, OpenVINO, TensorRT, CoreML, TensorFlow
|
||
|
SavedModel, TensorFlow GraphDef, TensorFlow Lite, and TensorFlow Edge TPU. Edge TPU and TF.js are unsupported.
|
||
|
|
||
|
Usage:
|
||
|
Install required packages:
|
||
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU support
|
||
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU support
|
||
|
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
|
||
|
Run export tests:
|
||
|
$ python benchmarks.py --weights yolov5s.pt --img 640
|
||
|
"""
|
||
|
y, t = [], time.time()
|
||
|
device = select_device(device)
|
||
|
for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
|
||
|
try:
|
||
|
w = (
|
||
|
weights
|
||
|
if f == "-"
|
||
|
else export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1]
|
||
|
) # weights
|
||
|
assert suffix in str(w), "export failed"
|
||
|
y.append([name, True])
|
||
|
except Exception:
|
||
|
y.append([name, False]) # mAP, t_inference
|
||
|
|
||
|
# Print results
|
||
|
LOGGER.info("\n")
|
||
|
parse_opt()
|
||
|
notebook_init() # print system info
|
||
|
py = pd.DataFrame(y, columns=["Format", "Export"])
|
||
|
LOGGER.info(f"\nExports complete ({time.time() - t:.2f}s)")
|
||
|
LOGGER.info(str(py))
|
||
|
return py
|
||
|
|
||
|
|
||
|
def parse_opt():
|
||
|
"""
|
||
|
Parses command-line arguments for YOLOv5 model inference configuration.
|
||
|
|
||
|
Args:
|
||
|
weights (str): The path to the weights file. Defaults to 'ROOT / "yolov5s.pt"'.
|
||
|
imgsz (int): Inference size in pixels. Defaults to 640.
|
||
|
batch_size (int): Batch size. Defaults to 1.
|
||
|
data (str): Path to the dataset YAML file. Defaults to 'ROOT / "data/coco128.yaml"'.
|
||
|
device (str): CUDA device, e.g., '0' or '0,1,2,3' or 'cpu'. Defaults to an empty string (auto-select).
|
||
|
half (bool): Use FP16 half-precision inference. This is a flag and defaults to False.
|
||
|
test (bool): Test exports only. This is a flag and defaults to False.
|
||
|
pt_only (bool): Test PyTorch only. This is a flag and defaults to False.
|
||
|
hard_fail (bool | str): Throw an error on benchmark failure. Can be a boolean or a string representing a minimum
|
||
|
metric floor, e.g., '0.29'. Defaults to False.
|
||
|
|
||
|
Returns:
|
||
|
argparse.Namespace: Parsed command-line arguments encapsulated in an argparse Namespace object.
|
||
|
|
||
|
Notes:
|
||
|
The function modifies the 'opt.data' by checking and validating the YAML path using 'check_yaml()'.
|
||
|
The parsed arguments are printed for reference using 'print_args()'.
|
||
|
"""
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="weights path")
|
||
|
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="inference size (pixels)")
|
||
|
parser.add_argument("--batch-size", type=int, default=1, help="batch size")
|
||
|
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
|
||
|
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
|
||
|
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
|
||
|
parser.add_argument("--test", action="store_true", help="test exports only")
|
||
|
parser.add_argument("--pt-only", action="store_true", help="test PyTorch only")
|
||
|
parser.add_argument("--hard-fail", nargs="?", const=True, default=False, help="Exception on error or < min metric")
|
||
|
opt = parser.parse_args()
|
||
|
opt.data = check_yaml(opt.data) # check YAML
|
||
|
print_args(vars(opt))
|
||
|
return opt
|
||
|
|
||
|
|
||
|
def main(opt):
|
||
|
"""
|
||
|
Executes YOLOv5 benchmark tests or main training/inference routines based on the provided command-line arguments.
|
||
|
|
||
|
Args:
|
||
|
opt (argparse.Namespace): Parsed command-line arguments including options for weights, image size, batch size, data
|
||
|
configuration, device, and other flags for inference settings.
|
||
|
|
||
|
Returns:
|
||
|
None: This function does not return any value. It leverages side-effects such as logging and running benchmarks.
|
||
|
|
||
|
Example:
|
||
|
```python
|
||
|
if __name__ == "__main__":
|
||
|
opt = parse_opt()
|
||
|
main(opt)
|
||
|
```
|
||
|
|
||
|
Notes:
|
||
|
- For a complete list of supported export formats and their respective requirements, refer to the
|
||
|
[Ultralytics YOLOv5 Export Formats](https://github.com/ultralytics/yolov5#export-formats).
|
||
|
- Ensure that you have installed all necessary dependencies by following the installation instructions detailed in
|
||
|
the [main repository](https://github.com/ultralytics/yolov5#installation).
|
||
|
|
||
|
```shell
|
||
|
# Running benchmarks on default weights and image size
|
||
|
$ python benchmarks.py --weights yolov5s.pt --img 640
|
||
|
```
|
||
|
"""
|
||
|
test(**vars(opt)) if opt.test else run(**vars(opt))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
opt = parse_opt()
|
||
|
main(opt)
|