You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
179 lines
8.0 KiB
Python
179 lines
8.0 KiB
Python
3 weeks ago
|
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||
|
"""
|
||
|
Validate a trained YOLOv5 classification model on a classification dataset.
|
||
|
|
||
|
Usage:
|
||
|
$ bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
|
||
|
$ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate ImageNet
|
||
|
|
||
|
Usage - formats:
|
||
|
$ python classify/val.py --weights yolov5s-cls.pt # PyTorch
|
||
|
yolov5s-cls.torchscript # TorchScript
|
||
|
yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
||
|
yolov5s-cls_openvino_model # OpenVINO
|
||
|
yolov5s-cls.engine # TensorRT
|
||
|
yolov5s-cls.mlmodel # CoreML (macOS-only)
|
||
|
yolov5s-cls_saved_model # TensorFlow SavedModel
|
||
|
yolov5s-cls.pb # TensorFlow GraphDef
|
||
|
yolov5s-cls.tflite # TensorFlow Lite
|
||
|
yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
|
||
|
yolov5s-cls_paddle_model # PaddlePaddle
|
||
|
"""
|
||
|
|
||
|
import argparse
|
||
|
import os
|
||
|
import sys
|
||
|
from pathlib import Path
|
||
|
|
||
|
import torch
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
FILE = Path(__file__).resolve()
|
||
|
ROOT = FILE.parents[1] # YOLOv5 root directory
|
||
|
if str(ROOT) not in sys.path:
|
||
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||
|
|
||
|
from models.common import DetectMultiBackend
|
||
|
from utils.dataloaders import create_classification_dataloader
|
||
|
from utils.general import (
|
||
|
LOGGER,
|
||
|
TQDM_BAR_FORMAT,
|
||
|
Profile,
|
||
|
check_img_size,
|
||
|
check_requirements,
|
||
|
colorstr,
|
||
|
increment_path,
|
||
|
print_args,
|
||
|
)
|
||
|
from utils.torch_utils import select_device, smart_inference_mode
|
||
|
|
||
|
|
||
|
@smart_inference_mode()
|
||
|
def run(
|
||
|
data=ROOT / "../datasets/mnist", # dataset dir
|
||
|
weights=ROOT / "yolov5s-cls.pt", # model.pt path(s)
|
||
|
batch_size=128, # batch size
|
||
|
imgsz=224, # inference size (pixels)
|
||
|
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||
|
workers=8, # max dataloader workers (per RANK in DDP mode)
|
||
|
verbose=False, # verbose output
|
||
|
project=ROOT / "runs/val-cls", # save to project/name
|
||
|
name="exp", # save to project/name
|
||
|
exist_ok=False, # existing project/name ok, do not increment
|
||
|
half=False, # use FP16 half-precision inference
|
||
|
dnn=False, # use OpenCV DNN for ONNX inference
|
||
|
model=None,
|
||
|
dataloader=None,
|
||
|
criterion=None,
|
||
|
pbar=None,
|
||
|
):
|
||
|
"""Validates a YOLOv5 classification model on a dataset, computing metrics like top1 and top5 accuracy."""
|
||
|
# Initialize/load model and set device
|
||
|
training = model is not None
|
||
|
if training: # called by train.py
|
||
|
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
|
||
|
half &= device.type != "cpu" # half precision only supported on CUDA
|
||
|
model.half() if half else model.float()
|
||
|
else: # called directly
|
||
|
device = select_device(device, batch_size=batch_size)
|
||
|
|
||
|
# Directories
|
||
|
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
||
|
save_dir.mkdir(parents=True, exist_ok=True) # make dir
|
||
|
|
||
|
# Load model
|
||
|
model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
|
||
|
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
|
||
|
imgsz = check_img_size(imgsz, s=stride) # check image size
|
||
|
half = model.fp16 # FP16 supported on limited backends with CUDA
|
||
|
if engine:
|
||
|
batch_size = model.batch_size
|
||
|
else:
|
||
|
device = model.device
|
||
|
if not (pt or jit):
|
||
|
batch_size = 1 # export.py models default to batch-size 1
|
||
|
LOGGER.info(f"Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models")
|
||
|
|
||
|
# Dataloader
|
||
|
data = Path(data)
|
||
|
test_dir = data / "test" if (data / "test").exists() else data / "val" # data/test or data/val
|
||
|
dataloader = create_classification_dataloader(
|
||
|
path=test_dir, imgsz=imgsz, batch_size=batch_size, augment=False, rank=-1, workers=workers
|
||
|
)
|
||
|
|
||
|
model.eval()
|
||
|
pred, targets, loss, dt = [], [], 0, (Profile(device=device), Profile(device=device), Profile(device=device))
|
||
|
n = len(dataloader) # number of batches
|
||
|
action = "validating" if dataloader.dataset.root.stem == "val" else "testing"
|
||
|
desc = f"{pbar.desc[:-36]}{action:>36}" if pbar else f"{action}"
|
||
|
bar = tqdm(dataloader, desc, n, not training, bar_format=TQDM_BAR_FORMAT, position=0)
|
||
|
with torch.cuda.amp.autocast(enabled=device.type != "cpu"):
|
||
|
for images, labels in bar:
|
||
|
with dt[0]:
|
||
|
images, labels = images.to(device, non_blocking=True), labels.to(device)
|
||
|
|
||
|
with dt[1]:
|
||
|
y = model(images)
|
||
|
|
||
|
with dt[2]:
|
||
|
pred.append(y.argsort(1, descending=True)[:, :5])
|
||
|
targets.append(labels)
|
||
|
if criterion:
|
||
|
loss += criterion(y, labels)
|
||
|
|
||
|
loss /= n
|
||
|
pred, targets = torch.cat(pred), torch.cat(targets)
|
||
|
correct = (targets[:, None] == pred).float()
|
||
|
acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy
|
||
|
top1, top5 = acc.mean(0).tolist()
|
||
|
|
||
|
if pbar:
|
||
|
pbar.desc = f"{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}"
|
||
|
if verbose: # all classes
|
||
|
LOGGER.info(f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}")
|
||
|
LOGGER.info(f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}")
|
||
|
for i, c in model.names.items():
|
||
|
acc_i = acc[targets == i]
|
||
|
top1i, top5i = acc_i.mean(0).tolist()
|
||
|
LOGGER.info(f"{c:>24}{acc_i.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}")
|
||
|
|
||
|
# Print results
|
||
|
t = tuple(x.t / len(dataloader.dataset.samples) * 1e3 for x in dt) # speeds per image
|
||
|
shape = (1, 3, imgsz, imgsz)
|
||
|
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}" % t)
|
||
|
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
|
||
|
|
||
|
return top1, top5, loss
|
||
|
|
||
|
|
||
|
def parse_opt():
|
||
|
"""Parses and returns command line arguments for YOLOv5 model evaluation and inference settings."""
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument("--data", type=str, default=ROOT / "../datasets/mnist", help="dataset path")
|
||
|
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s-cls.pt", help="model.pt path(s)")
|
||
|
parser.add_argument("--batch-size", type=int, default=128, help="batch size")
|
||
|
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=224, help="inference size (pixels)")
|
||
|
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
|
||
|
parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
|
||
|
parser.add_argument("--verbose", nargs="?", const=True, default=True, help="verbose output")
|
||
|
parser.add_argument("--project", default=ROOT / "runs/val-cls", help="save to project/name")
|
||
|
parser.add_argument("--name", default="exp", help="save to project/name")
|
||
|
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
|
||
|
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
|
||
|
parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
|
||
|
opt = parser.parse_args()
|
||
|
print_args(vars(opt))
|
||
|
return opt
|
||
|
|
||
|
|
||
|
def main(opt):
|
||
|
"""Executes the YOLOv5 model prediction workflow, handling argument parsing and requirement checks."""
|
||
|
check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
|
||
|
run(**vars(opt))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
opt = parse_opt()
|
||
|
main(opt)
|