You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

135 lines
4.9 KiB
Python

3 weeks ago
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
"""Activation functions."""
import torch
import torch.nn as nn
import torch.nn.functional as F
class SiLU(nn.Module):
"""Applies the Sigmoid-weighted Linear Unit (SiLU) activation function, also known as Swish."""
@staticmethod
def forward(x):
"""
Applies the Sigmoid-weighted Linear Unit (SiLU) activation function.
https://arxiv.org/pdf/1606.08415.pdf.
"""
return x * torch.sigmoid(x)
class Hardswish(nn.Module):
"""Applies the Hardswish activation function, which is efficient for mobile and embedded devices."""
@staticmethod
def forward(x):
"""
Applies the Hardswish activation function, compatible with TorchScript, CoreML, and ONNX.
Equivalent to x * F.hardsigmoid(x)
"""
return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 # for TorchScript, CoreML and ONNX
class Mish(nn.Module):
"""Mish activation https://github.com/digantamisra98/Mish."""
@staticmethod
def forward(x):
"""Applies the Mish activation function, a smooth alternative to ReLU."""
return x * F.softplus(x).tanh()
class MemoryEfficientMish(nn.Module):
"""Efficiently applies the Mish activation function using custom autograd for reduced memory usage."""
class F(torch.autograd.Function):
"""Implements a custom autograd function for memory-efficient Mish activation."""
@staticmethod
def forward(ctx, x):
"""Applies the Mish activation function, a smooth ReLU alternative, to the input tensor `x`."""
ctx.save_for_backward(x)
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
@staticmethod
def backward(ctx, grad_output):
"""Computes the gradient of the Mish activation function with respect to input `x`."""
x = ctx.saved_tensors[0]
sx = torch.sigmoid(x)
fx = F.softplus(x).tanh()
return grad_output * (fx + x * sx * (1 - fx * fx))
def forward(self, x):
"""Applies the Mish activation function to the input tensor `x`."""
return self.F.apply(x)
class FReLU(nn.Module):
"""FReLU activation https://arxiv.org/abs/2007.11824."""
def __init__(self, c1, k=3): # ch_in, kernel
"""Initializes FReLU activation with channel `c1` and kernel size `k`."""
super().__init__()
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
self.bn = nn.BatchNorm2d(c1)
def forward(self, x):
"""
Applies FReLU activation with max operation between input and BN-convolved input.
https://arxiv.org/abs/2007.11824
"""
return torch.max(x, self.bn(self.conv(x)))
class AconC(nn.Module):
"""
ACON activation (activate or not) function.
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
See "Activate or Not: Learning Customized Activation" https://arxiv.org/pdf/2009.04759.pdf.
"""
def __init__(self, c1):
"""Initializes AconC with learnable parameters p1, p2, and beta for channel-wise activation control."""
super().__init__()
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
def forward(self, x):
"""Applies AconC activation function with learnable parameters for channel-wise control on input tensor x."""
dpx = (self.p1 - self.p2) * x
return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x
class MetaAconC(nn.Module):
"""
ACON activation (activate or not) function.
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
See "Activate or Not: Learning Customized Activation" https://arxiv.org/pdf/2009.04759.pdf.
"""
def __init__(self, c1, k=1, s=1, r=16):
"""Initializes MetaAconC with params: channel_in (c1), kernel size (k=1), stride (s=1), reduction (r=16)."""
super().__init__()
c2 = max(r, c1 // r)
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
# self.bn1 = nn.BatchNorm2d(c2)
# self.bn2 = nn.BatchNorm2d(c1)
def forward(self, x):
"""Applies a forward pass transforming input `x` using learnable parameters and sigmoid activation."""
y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
# batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
# beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable
beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed
dpx = (self.p1 - self.p2) * x
return dpx * torch.sigmoid(beta * dpx) + self.p2 * x