You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
42 lines
1.2 KiB
Python
42 lines
1.2 KiB
Python
3 weeks ago
|
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||
|
# Resume all interrupted trainings in yolov5/ dir including DDP trainings
|
||
|
# Usage: $ python utils/aws/resume.py
|
||
|
|
||
|
import os
|
||
|
import sys
|
||
|
from pathlib import Path
|
||
|
|
||
|
import torch
|
||
|
import yaml
|
||
|
|
||
|
FILE = Path(__file__).resolve()
|
||
|
ROOT = FILE.parents[2] # YOLOv5 root directory
|
||
|
if str(ROOT) not in sys.path:
|
||
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||
|
|
||
|
port = 0 # --master_port
|
||
|
path = Path("").resolve()
|
||
|
for last in path.rglob("*/**/last.pt"):
|
||
|
ckpt = torch.load(last)
|
||
|
if ckpt["optimizer"] is None:
|
||
|
continue
|
||
|
|
||
|
# Load opt.yaml
|
||
|
with open(last.parent.parent / "opt.yaml", errors="ignore") as f:
|
||
|
opt = yaml.safe_load(f)
|
||
|
|
||
|
# Get device count
|
||
|
d = opt["device"].split(",") # devices
|
||
|
nd = len(d) # number of devices
|
||
|
ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel
|
||
|
|
||
|
if ddp: # multi-GPU
|
||
|
port += 1
|
||
|
cmd = f"python -m torch.distributed.run --nproc_per_node {nd} --master_port {port} train.py --resume {last}"
|
||
|
else: # single-GPU
|
||
|
cmd = f"python train.py --resume {last}"
|
||
|
|
||
|
cmd += " > /dev/null 2>&1 &" # redirect output to dev/null and run in daemon thread
|
||
|
print(cmd)
|
||
|
os.system(cmd)
|