You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
152 lines
4.7 KiB
Python
152 lines
4.7 KiB
Python
3 weeks ago
|
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||
|
|
||
|
import logging
|
||
|
import os
|
||
|
from urllib.parse import urlparse
|
||
|
|
||
|
try:
|
||
|
import comet_ml
|
||
|
except ImportError:
|
||
|
comet_ml = None
|
||
|
|
||
|
import yaml
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
COMET_PREFIX = "comet://"
|
||
|
COMET_MODEL_NAME = os.getenv("COMET_MODEL_NAME", "yolov5")
|
||
|
COMET_DEFAULT_CHECKPOINT_FILENAME = os.getenv("COMET_DEFAULT_CHECKPOINT_FILENAME", "last.pt")
|
||
|
|
||
|
|
||
|
def download_model_checkpoint(opt, experiment):
|
||
|
"""Downloads YOLOv5 model checkpoint from Comet ML experiment, updating `opt.weights` with download path."""
|
||
|
model_dir = f"{opt.project}/{experiment.name}"
|
||
|
os.makedirs(model_dir, exist_ok=True)
|
||
|
|
||
|
model_name = COMET_MODEL_NAME
|
||
|
model_asset_list = experiment.get_model_asset_list(model_name)
|
||
|
|
||
|
if len(model_asset_list) == 0:
|
||
|
logger.error(f"COMET ERROR: No checkpoints found for model name : {model_name}")
|
||
|
return
|
||
|
|
||
|
model_asset_list = sorted(
|
||
|
model_asset_list,
|
||
|
key=lambda x: x["step"],
|
||
|
reverse=True,
|
||
|
)
|
||
|
logged_checkpoint_map = {asset["fileName"]: asset["assetId"] for asset in model_asset_list}
|
||
|
|
||
|
resource_url = urlparse(opt.weights)
|
||
|
checkpoint_filename = resource_url.query
|
||
|
|
||
|
if checkpoint_filename:
|
||
|
asset_id = logged_checkpoint_map.get(checkpoint_filename)
|
||
|
else:
|
||
|
asset_id = logged_checkpoint_map.get(COMET_DEFAULT_CHECKPOINT_FILENAME)
|
||
|
checkpoint_filename = COMET_DEFAULT_CHECKPOINT_FILENAME
|
||
|
|
||
|
if asset_id is None:
|
||
|
logger.error(f"COMET ERROR: Checkpoint {checkpoint_filename} not found in the given Experiment")
|
||
|
return
|
||
|
|
||
|
try:
|
||
|
logger.info(f"COMET INFO: Downloading checkpoint {checkpoint_filename}")
|
||
|
asset_filename = checkpoint_filename
|
||
|
|
||
|
model_binary = experiment.get_asset(asset_id, return_type="binary", stream=False)
|
||
|
model_download_path = f"{model_dir}/{asset_filename}"
|
||
|
with open(model_download_path, "wb") as f:
|
||
|
f.write(model_binary)
|
||
|
|
||
|
opt.weights = model_download_path
|
||
|
|
||
|
except Exception as e:
|
||
|
logger.warning("COMET WARNING: Unable to download checkpoint from Comet")
|
||
|
logger.exception(e)
|
||
|
|
||
|
|
||
|
def set_opt_parameters(opt, experiment):
|
||
|
"""
|
||
|
Update the opts Namespace with parameters from Comet's ExistingExperiment when resuming a run.
|
||
|
|
||
|
Args:
|
||
|
opt (argparse.Namespace): Namespace of command line options
|
||
|
experiment (comet_ml.APIExperiment): Comet API Experiment object
|
||
|
"""
|
||
|
asset_list = experiment.get_asset_list()
|
||
|
resume_string = opt.resume
|
||
|
|
||
|
for asset in asset_list:
|
||
|
if asset["fileName"] == "opt.yaml":
|
||
|
asset_id = asset["assetId"]
|
||
|
asset_binary = experiment.get_asset(asset_id, return_type="binary", stream=False)
|
||
|
opt_dict = yaml.safe_load(asset_binary)
|
||
|
for key, value in opt_dict.items():
|
||
|
setattr(opt, key, value)
|
||
|
opt.resume = resume_string
|
||
|
|
||
|
# Save hyperparameters to YAML file
|
||
|
# Necessary to pass checks in training script
|
||
|
save_dir = f"{opt.project}/{experiment.name}"
|
||
|
os.makedirs(save_dir, exist_ok=True)
|
||
|
|
||
|
hyp_yaml_path = f"{save_dir}/hyp.yaml"
|
||
|
with open(hyp_yaml_path, "w") as f:
|
||
|
yaml.dump(opt.hyp, f)
|
||
|
opt.hyp = hyp_yaml_path
|
||
|
|
||
|
|
||
|
def check_comet_weights(opt):
|
||
|
"""
|
||
|
Downloads model weights from Comet and updates the weights path to point to saved weights location.
|
||
|
|
||
|
Args:
|
||
|
opt (argparse.Namespace): Command Line arguments passed
|
||
|
to YOLOv5 training script
|
||
|
|
||
|
Returns:
|
||
|
None/bool: Return True if weights are successfully downloaded
|
||
|
else return None
|
||
|
"""
|
||
|
if comet_ml is None:
|
||
|
return
|
||
|
|
||
|
if isinstance(opt.weights, str) and opt.weights.startswith(COMET_PREFIX):
|
||
|
api = comet_ml.API()
|
||
|
resource = urlparse(opt.weights)
|
||
|
experiment_path = f"{resource.netloc}{resource.path}"
|
||
|
experiment = api.get(experiment_path)
|
||
|
download_model_checkpoint(opt, experiment)
|
||
|
return True
|
||
|
|
||
|
return None
|
||
|
|
||
|
|
||
|
def check_comet_resume(opt):
|
||
|
"""
|
||
|
Restores run parameters to its original state based on the model checkpoint and logged Experiment parameters.
|
||
|
|
||
|
Args:
|
||
|
opt (argparse.Namespace): Command Line arguments passed
|
||
|
to YOLOv5 training script
|
||
|
|
||
|
Returns:
|
||
|
None/bool: Return True if the run is restored successfully
|
||
|
else return None
|
||
|
"""
|
||
|
if comet_ml is None:
|
||
|
return
|
||
|
|
||
|
if isinstance(opt.resume, str) and opt.resume.startswith(COMET_PREFIX):
|
||
|
api = comet_ml.API()
|
||
|
resource = urlparse(opt.resume)
|
||
|
experiment_path = f"{resource.netloc}{resource.path}"
|
||
|
experiment = api.get(experiment_path)
|
||
|
set_opt_parameters(opt, experiment)
|
||
|
download_model_checkpoint(opt, experiment)
|
||
|
|
||
|
return True
|
||
|
|
||
|
return None
|