You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

518 lines
20 KiB
Python

3 weeks ago
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
"""Plotting utils."""
import contextlib
import math
import os
from copy import copy
from pathlib import Path
import cv2
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sn
import torch
from PIL import Image, ImageDraw
from scipy.ndimage.filters import gaussian_filter1d
from ultralytics.utils.plotting import Annotator
from utils import TryExcept, threaded
from utils.general import LOGGER, clip_boxes, increment_path, xywh2xyxy, xyxy2xywh
from utils.metrics import fitness
# Settings
RANK = int(os.getenv("RANK", -1))
matplotlib.rc("font", **{"size": 11})
matplotlib.use("Agg") # for writing to files only
class Colors:
"""Provides an RGB color palette derived from Ultralytics color scheme for visualization tasks."""
def __init__(self):
"""
Initializes the Colors class with a palette derived from Ultralytics color scheme, converting hex codes to RGB.
Colors derived from `hex = matplotlib.colors.TABLEAU_COLORS.values()`.
"""
hexs = (
"FF3838",
"FF9D97",
"FF701F",
"FFB21D",
"CFD231",
"48F90A",
"92CC17",
"3DDB86",
"1A9334",
"00D4BB",
"2C99A8",
"00C2FF",
"344593",
"6473FF",
"0018EC",
"8438FF",
"520085",
"CB38FF",
"FF95C8",
"FF37C7",
)
self.palette = [self.hex2rgb(f"#{c}") for c in hexs]
self.n = len(self.palette)
def __call__(self, i, bgr=False):
"""Returns color from palette by index `i`, in BGR format if `bgr=True`, else RGB; `i` is an integer index."""
c = self.palette[int(i) % self.n]
return (c[2], c[1], c[0]) if bgr else c
@staticmethod
def hex2rgb(h):
"""Converts hexadecimal color `h` to an RGB tuple (PIL-compatible) with order (R, G, B)."""
return tuple(int(h[1 + i : 1 + i + 2], 16) for i in (0, 2, 4))
colors = Colors() # create instance for 'from utils.plots import colors'
def feature_visualization(x, module_type, stage, n=32, save_dir=Path("runs/detect/exp")):
"""
x: Features to be visualized
module_type: Module type
stage: Module stage within model
n: Maximum number of feature maps to plot
save_dir: Directory to save results.
"""
if ("Detect" not in module_type) and (
"Segment" not in module_type
): # 'Detect' for Object Detect task,'Segment' for Segment task
batch, channels, height, width = x.shape # batch, channels, height, width
if height > 1 and width > 1:
f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename
blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
n = min(n, channels) # number of plots
fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
ax = ax.ravel()
plt.subplots_adjust(wspace=0.05, hspace=0.05)
for i in range(n):
ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
ax[i].axis("off")
LOGGER.info(f"Saving {f}... ({n}/{channels})")
plt.savefig(f, dpi=300, bbox_inches="tight")
plt.close()
np.save(str(f.with_suffix(".npy")), x[0].cpu().numpy()) # npy save
def hist2d(x, y, n=100):
"""
Generates a logarithmic 2D histogram, useful for visualizing label or evolution distributions.
Used in used in labels.png and evolve.png.
"""
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
return np.log(hist[xidx, yidx])
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
"""Applies a low-pass Butterworth filter to `data` with specified `cutoff`, `fs`, and `order`."""
from scipy.signal import butter, filtfilt
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
def butter_lowpass(cutoff, fs, order):
"""Applies a low-pass Butterworth filter to a signal with specified cutoff frequency, sample rate, and filter
order.
"""
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
return butter(order, normal_cutoff, btype="low", analog=False)
b, a = butter_lowpass(cutoff, fs, order=order)
return filtfilt(b, a, data) # forward-backward filter
def output_to_target(output, max_det=300):
"""Converts YOLOv5 model output to [batch_id, class_id, x, y, w, h, conf] format for plotting, limiting detections
to `max_det`.
"""
targets = []
for i, o in enumerate(output):
box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
j = torch.full((conf.shape[0], 1), i)
targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1))
return torch.cat(targets, 0).numpy()
@threaded
def plot_images(images, targets, paths=None, fname="images.jpg", names=None):
"""Plots an image grid with labels from YOLOv5 predictions or targets, saving to `fname`."""
if isinstance(images, torch.Tensor):
images = images.cpu().float().numpy()
if isinstance(targets, torch.Tensor):
targets = targets.cpu().numpy()
max_size = 1920 # max image size
max_subplots = 16 # max image subplots, i.e. 4x4
bs, _, h, w = images.shape # batch size, _, height, width
bs = min(bs, max_subplots) # limit plot images
ns = np.ceil(bs**0.5) # number of subplots (square)
if np.max(images[0]) <= 1:
images *= 255 # de-normalise (optional)
# Build Image
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
for i, im in enumerate(images):
if i == max_subplots: # if last batch has fewer images than we expect
break
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
im = im.transpose(1, 2, 0)
mosaic[y : y + h, x : x + w, :] = im
# Resize (optional)
scale = max_size / ns / max(h, w)
if scale < 1:
h = math.ceil(scale * h)
w = math.ceil(scale * w)
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
# Annotate
fs = int((h + w) * ns * 0.01) # font size
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
for i in range(i + 1):
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
if paths:
annotator.text([x + 5, y + 5], text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
if len(targets) > 0:
ti = targets[targets[:, 0] == i] # image targets
boxes = xywh2xyxy(ti[:, 2:6]).T
classes = ti[:, 1].astype("int")
labels = ti.shape[1] == 6 # labels if no conf column
conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred)
if boxes.shape[1]:
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
boxes[[0, 2]] *= w # scale to pixels
boxes[[1, 3]] *= h
elif scale < 1: # absolute coords need scale if image scales
boxes *= scale
boxes[[0, 2]] += x
boxes[[1, 3]] += y
for j, box in enumerate(boxes.T.tolist()):
cls = classes[j]
color = colors(cls)
cls = names[cls] if names else cls
if labels or conf[j] > 0.25: # 0.25 conf thresh
label = f"{cls}" if labels else f"{cls} {conf[j]:.1f}"
annotator.box_label(box, label, color=color)
annotator.im.save(fname) # save
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=""):
"""Plots learning rate schedule for given optimizer and scheduler, saving plot to `save_dir`."""
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
y = []
for _ in range(epochs):
scheduler.step()
y.append(optimizer.param_groups[0]["lr"])
plt.plot(y, ".-", label="LR")
plt.xlabel("epoch")
plt.ylabel("LR")
plt.grid()
plt.xlim(0, epochs)
plt.ylim(0)
plt.savefig(Path(save_dir) / "LR.png", dpi=200)
plt.close()
def plot_val_txt():
"""
Plots 2D and 1D histograms of bounding box centers from 'val.txt' using matplotlib, saving as 'hist2d.png' and
'hist1d.png'.
Example: from utils.plots import *; plot_val()
"""
x = np.loadtxt("val.txt", dtype=np.float32)
box = xyxy2xywh(x[:, :4])
cx, cy = box[:, 0], box[:, 1]
fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
ax.set_aspect("equal")
plt.savefig("hist2d.png", dpi=300)
fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
ax[0].hist(cx, bins=600)
ax[1].hist(cy, bins=600)
plt.savefig("hist1d.png", dpi=200)
def plot_targets_txt():
"""
Plots histograms of object detection targets from 'targets.txt', saving the figure as 'targets.jpg'.
Example: from utils.plots import *; plot_targets_txt()
"""
x = np.loadtxt("targets.txt", dtype=np.float32).T
s = ["x targets", "y targets", "width targets", "height targets"]
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
ax = ax.ravel()
for i in range(4):
ax[i].hist(x[i], bins=100, label=f"{x[i].mean():.3g} +/- {x[i].std():.3g}")
ax[i].legend()
ax[i].set_title(s[i])
plt.savefig("targets.jpg", dpi=200)
def plot_val_study(file="", dir="", x=None):
"""
Plots validation study results from 'study*.txt' files in a directory or a specific file, comparing model
performance and speed.
Example: from utils.plots import *; plot_val_study()
"""
save_dir = Path(file).parent if file else Path(dir)
plot2 = False # plot additional results
if plot2:
ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel()
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
# for f in [save_dir / f'study_coco_{x}.txt' for x in ['yolov5n6', 'yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]:
for f in sorted(save_dir.glob("study*.txt")):
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
x = np.arange(y.shape[1]) if x is None else np.array(x)
if plot2:
s = ["P", "R", "mAP@.5", "mAP@.5:.95", "t_preprocess (ms/img)", "t_inference (ms/img)", "t_NMS (ms/img)"]
for i in range(7):
ax[i].plot(x, y[i], ".-", linewidth=2, markersize=8)
ax[i].set_title(s[i])
j = y[3].argmax() + 1
ax2.plot(
y[5, 1:j],
y[3, 1:j] * 1e2,
".-",
linewidth=2,
markersize=8,
label=f.stem.replace("study_coco_", "").replace("yolo", "YOLO"),
)
ax2.plot(
1e3 / np.array([209, 140, 97, 58, 35, 18]),
[34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
"k.-",
linewidth=2,
markersize=8,
alpha=0.25,
label="EfficientDet",
)
ax2.grid(alpha=0.2)
ax2.set_yticks(np.arange(20, 60, 5))
ax2.set_xlim(0, 57)
ax2.set_ylim(25, 55)
ax2.set_xlabel("GPU Speed (ms/img)")
ax2.set_ylabel("COCO AP val")
ax2.legend(loc="lower right")
f = save_dir / "study.png"
print(f"Saving {f}...")
plt.savefig(f, dpi=300)
@TryExcept() # known issue https://github.com/ultralytics/yolov5/issues/5395
def plot_labels(labels, names=(), save_dir=Path("")):
"""Plots dataset labels, saving correlogram and label images, handles classes, and visualizes bounding boxes."""
LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
nc = int(c.max() + 1) # number of classes
x = pd.DataFrame(b.transpose(), columns=["x", "y", "width", "height"])
# seaborn correlogram
sn.pairplot(x, corner=True, diag_kind="auto", kind="hist", diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
plt.savefig(save_dir / "labels_correlogram.jpg", dpi=200)
plt.close()
# matplotlib labels
matplotlib.use("svg") # faster
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
with contextlib.suppress(Exception): # color histogram bars by class
[y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # known issue #3195
ax[0].set_ylabel("instances")
if 0 < len(names) < 30:
ax[0].set_xticks(range(len(names)))
ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
else:
ax[0].set_xlabel("classes")
sn.histplot(x, x="x", y="y", ax=ax[2], bins=50, pmax=0.9)
sn.histplot(x, x="width", y="height", ax=ax[3], bins=50, pmax=0.9)
# rectangles
labels[:, 1:3] = 0.5 # center
labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
for cls, *box in labels[:1000]:
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot
ax[1].imshow(img)
ax[1].axis("off")
for a in [0, 1, 2, 3]:
for s in ["top", "right", "left", "bottom"]:
ax[a].spines[s].set_visible(False)
plt.savefig(save_dir / "labels.jpg", dpi=200)
matplotlib.use("Agg")
plt.close()
def imshow_cls(im, labels=None, pred=None, names=None, nmax=25, verbose=False, f=Path("images.jpg")):
"""Displays a grid of images with optional labels and predictions, saving to a file."""
from utils.augmentations import denormalize
names = names or [f"class{i}" for i in range(1000)]
blocks = torch.chunk(
denormalize(im.clone()).cpu().float(), len(im), dim=0
) # select batch index 0, block by channels
n = min(len(blocks), nmax) # number of plots
m = min(8, round(n**0.5)) # 8 x 8 default
fig, ax = plt.subplots(math.ceil(n / m), m) # 8 rows x n/8 cols
ax = ax.ravel() if m > 1 else [ax]
# plt.subplots_adjust(wspace=0.05, hspace=0.05)
for i in range(n):
ax[i].imshow(blocks[i].squeeze().permute((1, 2, 0)).numpy().clip(0.0, 1.0))
ax[i].axis("off")
if labels is not None:
s = names[labels[i]] + (f"{names[pred[i]]}" if pred is not None else "")
ax[i].set_title(s, fontsize=8, verticalalignment="top")
plt.savefig(f, dpi=300, bbox_inches="tight")
plt.close()
if verbose:
LOGGER.info(f"Saving {f}")
if labels is not None:
LOGGER.info("True: " + " ".join(f"{names[i]:3s}" for i in labels[:nmax]))
if pred is not None:
LOGGER.info("Predicted:" + " ".join(f"{names[i]:3s}" for i in pred[:nmax]))
return f
def plot_evolve(evolve_csv="path/to/evolve.csv"):
"""
Plots hyperparameter evolution results from a given CSV, saving the plot and displaying best results.
Example: from utils.plots import *; plot_evolve()
"""
evolve_csv = Path(evolve_csv)
data = pd.read_csv(evolve_csv)
keys = [x.strip() for x in data.columns]
x = data.values
f = fitness(x)
j = np.argmax(f) # max fitness index
plt.figure(figsize=(10, 12), tight_layout=True)
matplotlib.rc("font", **{"size": 8})
print(f"Best results from row {j} of {evolve_csv}:")
for i, k in enumerate(keys[7:]):
v = x[:, 7 + i]
mu = v[j] # best single result
plt.subplot(6, 5, i + 1)
plt.scatter(v, f, c=hist2d(v, f, 20), cmap="viridis", alpha=0.8, edgecolors="none")
plt.plot(mu, f.max(), "k+", markersize=15)
plt.title(f"{k} = {mu:.3g}", fontdict={"size": 9}) # limit to 40 characters
if i % 5 != 0:
plt.yticks([])
print(f"{k:>15}: {mu:.3g}")
f = evolve_csv.with_suffix(".png") # filename
plt.savefig(f, dpi=200)
plt.close()
print(f"Saved {f}")
def plot_results(file="path/to/results.csv", dir=""):
"""
Plots training results from a 'results.csv' file; accepts file path and directory as arguments.
Example: from utils.plots import *; plot_results('path/to/results.csv')
"""
save_dir = Path(file).parent if file else Path(dir)
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
ax = ax.ravel()
files = list(save_dir.glob("results*.csv"))
assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot."
for f in files:
try:
data = pd.read_csv(f)
s = [x.strip() for x in data.columns]
x = data.values[:, 0]
for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
y = data.values[:, j].astype("float")
# y[y == 0] = np.nan # don't show zero values
ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=8) # actual results
ax[i].plot(x, gaussian_filter1d(y, sigma=3), ":", label="smooth", linewidth=2) # smoothing line
ax[i].set_title(s[j], fontsize=12)
# if j in [8, 9, 10]: # share train and val loss y axes
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
except Exception as e:
LOGGER.info(f"Warning: Plotting error for {f}: {e}")
ax[1].legend()
fig.savefig(save_dir / "results.png", dpi=200)
plt.close()
def profile_idetection(start=0, stop=0, labels=(), save_dir=""):
"""
Plots per-image iDetection logs, comparing metrics like storage and performance over time.
Example: from utils.plots import *; profile_idetection()
"""
ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
s = ["Images", "Free Storage (GB)", "RAM Usage (GB)", "Battery", "dt_raw (ms)", "dt_smooth (ms)", "real-world FPS"]
files = list(Path(save_dir).glob("frames*.txt"))
for fi, f in enumerate(files):
try:
results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
n = results.shape[1] # number of rows
x = np.arange(start, min(stop, n) if stop else n)
results = results[:, x]
t = results[0] - results[0].min() # set t0=0s
results[0] = x
for i, a in enumerate(ax):
if i < len(results):
label = labels[fi] if len(labels) else f.stem.replace("frames_", "")
a.plot(t, results[i], marker=".", label=label, linewidth=1, markersize=5)
a.set_title(s[i])
a.set_xlabel("time (s)")
# if fi == len(files) - 1:
# a.set_ylim(bottom=0)
for side in ["top", "right"]:
a.spines[side].set_visible(False)
else:
a.remove()
except Exception as e:
print(f"Warning: Plotting error for {f}; {e}")
ax[1].legend()
plt.savefig(Path(save_dir) / "idetection_profile.png", dpi=200)
def save_one_box(xyxy, im, file=Path("im.jpg"), gain=1.02, pad=10, square=False, BGR=False, save=True):
"""Crops and saves an image from bounding box `xyxy`, applied with `gain` and `pad`, optionally squares and adjusts
for BGR.
"""
xyxy = torch.tensor(xyxy).view(-1, 4)
b = xyxy2xywh(xyxy) # boxes
if square:
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
xyxy = xywh2xyxy(b).long()
clip_boxes(xyxy, im.shape)
crop = im[int(xyxy[0, 1]) : int(xyxy[0, 3]), int(xyxy[0, 0]) : int(xyxy[0, 2]), :: (1 if BGR else -1)]
if save:
file.parent.mkdir(parents=True, exist_ok=True) # make directory
f = str(increment_path(file).with_suffix(".jpg"))
# cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) # save RGB
return crop