You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
101 lines
3.7 KiB
Python
101 lines
3.7 KiB
Python
3 weeks ago
|
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||
|
"""Image augmentation functions."""
|
||
|
|
||
|
import math
|
||
|
import random
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
|
||
|
from ..augmentations import box_candidates
|
||
|
from ..general import resample_segments, segment2box
|
||
|
|
||
|
|
||
|
def mixup(im, labels, segments, im2, labels2, segments2):
|
||
|
"""
|
||
|
Applies MixUp augmentation blending two images, labels, and segments with a random ratio.
|
||
|
|
||
|
See https://arxiv.org/pdf/1710.09412.pdf
|
||
|
"""
|
||
|
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
|
||
|
im = (im * r + im2 * (1 - r)).astype(np.uint8)
|
||
|
labels = np.concatenate((labels, labels2), 0)
|
||
|
segments = np.concatenate((segments, segments2), 0)
|
||
|
return im, labels, segments
|
||
|
|
||
|
|
||
|
def random_perspective(
|
||
|
im, targets=(), segments=(), degrees=10, translate=0.1, scale=0.1, shear=10, perspective=0.0, border=(0, 0)
|
||
|
):
|
||
|
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
|
||
|
# targets = [cls, xyxy]
|
||
|
"""Applies random perspective, rotation, scale, shear, and translation augmentations to an image and targets."""
|
||
|
height = im.shape[0] + border[0] * 2 # shape(h,w,c)
|
||
|
width = im.shape[1] + border[1] * 2
|
||
|
|
||
|
# Center
|
||
|
C = np.eye(3)
|
||
|
C[0, 2] = -im.shape[1] / 2 # x translation (pixels)
|
||
|
C[1, 2] = -im.shape[0] / 2 # y translation (pixels)
|
||
|
|
||
|
# Perspective
|
||
|
P = np.eye(3)
|
||
|
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
|
||
|
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
|
||
|
|
||
|
# Rotation and Scale
|
||
|
R = np.eye(3)
|
||
|
a = random.uniform(-degrees, degrees)
|
||
|
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
||
|
s = random.uniform(1 - scale, 1 + scale)
|
||
|
# s = 2 ** random.uniform(-scale, scale)
|
||
|
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
||
|
|
||
|
# Shear
|
||
|
S = np.eye(3)
|
||
|
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
|
||
|
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
|
||
|
|
||
|
# Translation
|
||
|
T = np.eye(3)
|
||
|
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
|
||
|
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
|
||
|
|
||
|
# Combined rotation matrix
|
||
|
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
|
||
|
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
||
|
if perspective:
|
||
|
im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
|
||
|
else: # affine
|
||
|
im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
|
||
|
|
||
|
# Visualize
|
||
|
# import matplotlib.pyplot as plt
|
||
|
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
|
||
|
# ax[0].imshow(im[:, :, ::-1]) # base
|
||
|
# ax[1].imshow(im2[:, :, ::-1]) # warped
|
||
|
|
||
|
# Transform label coordinates
|
||
|
n = len(targets)
|
||
|
new_segments = []
|
||
|
if n:
|
||
|
new = np.zeros((n, 4))
|
||
|
segments = resample_segments(segments) # upsample
|
||
|
for i, segment in enumerate(segments):
|
||
|
xy = np.ones((len(segment), 3))
|
||
|
xy[:, :2] = segment
|
||
|
xy = xy @ M.T # transform
|
||
|
xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
|
||
|
|
||
|
# clip
|
||
|
new[i] = segment2box(xy, width, height)
|
||
|
new_segments.append(xy)
|
||
|
|
||
|
# filter candidates
|
||
|
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01)
|
||
|
targets = targets[i]
|
||
|
targets[:, 1:5] = new[i]
|
||
|
new_segments = np.array(new_segments)[i]
|
||
|
|
||
|
return im, targets, new_segments
|