You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
605 lines
30 KiB
Python
605 lines
30 KiB
Python
3 weeks ago
|
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||
|
"""
|
||
|
Validate a trained YOLOv5 detection model on a detection dataset.
|
||
|
|
||
|
Usage:
|
||
|
$ python val.py --weights yolov5s.pt --data coco128.yaml --img 640
|
||
|
|
||
|
Usage - formats:
|
||
|
$ python val.py --weights yolov5s.pt # PyTorch
|
||
|
yolov5s.torchscript # TorchScript
|
||
|
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
||
|
yolov5s_openvino_model # OpenVINO
|
||
|
yolov5s.engine # TensorRT
|
||
|
yolov5s.mlpackage # CoreML (macOS-only)
|
||
|
yolov5s_saved_model # TensorFlow SavedModel
|
||
|
yolov5s.pb # TensorFlow GraphDef
|
||
|
yolov5s.tflite # TensorFlow Lite
|
||
|
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
|
||
|
yolov5s_paddle_model # PaddlePaddle
|
||
|
"""
|
||
|
|
||
|
import argparse
|
||
|
import json
|
||
|
import os
|
||
|
import subprocess
|
||
|
import sys
|
||
|
from pathlib import Path
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
FILE = Path(__file__).resolve()
|
||
|
ROOT = FILE.parents[0] # YOLOv5 root directory
|
||
|
if str(ROOT) not in sys.path:
|
||
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||
|
|
||
|
from models.common import DetectMultiBackend
|
||
|
from utils.callbacks import Callbacks
|
||
|
from utils.dataloaders import create_dataloader
|
||
|
from utils.general import (
|
||
|
LOGGER,
|
||
|
TQDM_BAR_FORMAT,
|
||
|
Profile,
|
||
|
check_dataset,
|
||
|
check_img_size,
|
||
|
check_requirements,
|
||
|
check_yaml,
|
||
|
coco80_to_coco91_class,
|
||
|
colorstr,
|
||
|
increment_path,
|
||
|
non_max_suppression,
|
||
|
print_args,
|
||
|
scale_boxes,
|
||
|
xywh2xyxy,
|
||
|
xyxy2xywh,
|
||
|
)
|
||
|
from utils.metrics import ConfusionMatrix, ap_per_class, box_iou
|
||
|
from utils.plots import output_to_target, plot_images, plot_val_study
|
||
|
from utils.torch_utils import select_device, smart_inference_mode
|
||
|
|
||
|
|
||
|
def save_one_txt(predn, save_conf, shape, file):
|
||
|
"""
|
||
|
Saves one detection result to a txt file in normalized xywh format, optionally including confidence.
|
||
|
|
||
|
Args:
|
||
|
predn (torch.Tensor): Predicted bounding boxes and associated confidence scores and classes in xyxy format, tensor
|
||
|
of shape (N, 6) where N is the number of detections.
|
||
|
save_conf (bool): If True, saves the confidence scores along with the bounding box coordinates.
|
||
|
shape (tuple): Shape of the original image as (height, width).
|
||
|
file (str | Path): File path where the result will be saved.
|
||
|
|
||
|
Returns:
|
||
|
None
|
||
|
|
||
|
Notes:
|
||
|
The xyxy bounding box format represents the coordinates (xmin, ymin, xmax, ymax).
|
||
|
The xywh format represents the coordinates (center_x, center_y, width, height) and is normalized by the width and
|
||
|
height of the image.
|
||
|
|
||
|
Example:
|
||
|
```python
|
||
|
predn = torch.tensor([[10, 20, 30, 40, 0.9, 1]]) # example prediction
|
||
|
save_one_txt(predn, save_conf=True, shape=(640, 480), file="output.txt")
|
||
|
```
|
||
|
"""
|
||
|
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
|
||
|
for *xyxy, conf, cls in predn.tolist():
|
||
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
||
|
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
||
|
with open(file, "a") as f:
|
||
|
f.write(("%g " * len(line)).rstrip() % line + "\n")
|
||
|
|
||
|
|
||
|
def save_one_json(predn, jdict, path, class_map):
|
||
|
"""
|
||
|
Saves a single JSON detection result, including image ID, category ID, bounding box, and confidence score.
|
||
|
|
||
|
Args:
|
||
|
predn (torch.Tensor): Predicted detections in xyxy format with shape (n, 6) where n is the number of detections.
|
||
|
The tensor should contain [x_min, y_min, x_max, y_max, confidence, class_id] for each detection.
|
||
|
jdict (list[dict]): List to collect JSON formatted detection results.
|
||
|
path (pathlib.Path): Path object of the image file, used to extract image_id.
|
||
|
class_map (dict[int, int]): Mapping from model class indices to dataset-specific category IDs.
|
||
|
|
||
|
Returns:
|
||
|
None: Appends detection results as dictionaries to `jdict` list in-place.
|
||
|
|
||
|
Example:
|
||
|
```python
|
||
|
predn = torch.tensor([[100, 50, 200, 150, 0.9, 0], [50, 30, 100, 80, 0.8, 1]])
|
||
|
jdict = []
|
||
|
path = Path("42.jpg")
|
||
|
class_map = {0: 18, 1: 19}
|
||
|
save_one_json(predn, jdict, path, class_map)
|
||
|
```
|
||
|
This will append to `jdict`:
|
||
|
```
|
||
|
[
|
||
|
{'image_id': 42, 'category_id': 18, 'bbox': [125.0, 75.0, 100.0, 100.0], 'score': 0.9},
|
||
|
{'image_id': 42, 'category_id': 19, 'bbox': [75.0, 55.0, 50.0, 50.0], 'score': 0.8}
|
||
|
]
|
||
|
```
|
||
|
|
||
|
Notes:
|
||
|
The `bbox` values are formatted as [x, y, width, height], where x and y represent the top-left corner of the box.
|
||
|
"""
|
||
|
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
|
||
|
box = xyxy2xywh(predn[:, :4]) # xywh
|
||
|
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
||
|
for p, b in zip(predn.tolist(), box.tolist()):
|
||
|
jdict.append(
|
||
|
{
|
||
|
"image_id": image_id,
|
||
|
"category_id": class_map[int(p[5])],
|
||
|
"bbox": [round(x, 3) for x in b],
|
||
|
"score": round(p[4], 5),
|
||
|
}
|
||
|
)
|
||
|
|
||
|
|
||
|
def process_batch(detections, labels, iouv):
|
||
|
"""
|
||
|
Return a correct prediction matrix given detections and labels at various IoU thresholds.
|
||
|
|
||
|
Args:
|
||
|
detections (np.ndarray): Array of shape (N, 6) where each row corresponds to a detection with format
|
||
|
[x1, y1, x2, y2, conf, class].
|
||
|
labels (np.ndarray): Array of shape (M, 5) where each row corresponds to a ground truth label with format
|
||
|
[class, x1, y1, x2, y2].
|
||
|
iouv (np.ndarray): Array of IoU thresholds to evaluate at.
|
||
|
|
||
|
Returns:
|
||
|
correct (np.ndarray): A binary array of shape (N, len(iouv)) indicating whether each detection is a true positive
|
||
|
for each IoU threshold. There are 10 IoU levels used in the evaluation.
|
||
|
|
||
|
Example:
|
||
|
```python
|
||
|
detections = np.array([[50, 50, 200, 200, 0.9, 1], [30, 30, 150, 150, 0.7, 0]])
|
||
|
labels = np.array([[1, 50, 50, 200, 200]])
|
||
|
iouv = np.linspace(0.5, 0.95, 10)
|
||
|
correct = process_batch(detections, labels, iouv)
|
||
|
```
|
||
|
|
||
|
Notes:
|
||
|
- This function is used as part of the evaluation pipeline for object detection models.
|
||
|
- IoU (Intersection over Union) is a common evaluation metric for object detection performance.
|
||
|
"""
|
||
|
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
|
||
|
iou = box_iou(labels[:, 1:], detections[:, :4])
|
||
|
correct_class = labels[:, 0:1] == detections[:, 5]
|
||
|
for i in range(len(iouv)):
|
||
|
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
|
||
|
if x[0].shape[0]:
|
||
|
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
|
||
|
if x[0].shape[0] > 1:
|
||
|
matches = matches[matches[:, 2].argsort()[::-1]]
|
||
|
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
||
|
# matches = matches[matches[:, 2].argsort()[::-1]]
|
||
|
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
||
|
correct[matches[:, 1].astype(int), i] = True
|
||
|
return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
|
||
|
|
||
|
|
||
|
@smart_inference_mode()
|
||
|
def run(
|
||
|
data,
|
||
|
weights=None, # model.pt path(s)
|
||
|
batch_size=32, # batch size
|
||
|
imgsz=640, # inference size (pixels)
|
||
|
conf_thres=0.001, # confidence threshold
|
||
|
iou_thres=0.6, # NMS IoU threshold
|
||
|
max_det=300, # maximum detections per image
|
||
|
task="val", # train, val, test, speed or study
|
||
|
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||
|
workers=8, # max dataloader workers (per RANK in DDP mode)
|
||
|
single_cls=False, # treat as single-class dataset
|
||
|
augment=False, # augmented inference
|
||
|
verbose=False, # verbose output
|
||
|
save_txt=False, # save results to *.txt
|
||
|
save_hybrid=False, # save label+prediction hybrid results to *.txt
|
||
|
save_conf=False, # save confidences in --save-txt labels
|
||
|
save_json=False, # save a COCO-JSON results file
|
||
|
project=ROOT / "runs/val", # save to project/name
|
||
|
name="exp", # save to project/name
|
||
|
exist_ok=False, # existing project/name ok, do not increment
|
||
|
half=True, # use FP16 half-precision inference
|
||
|
dnn=False, # use OpenCV DNN for ONNX inference
|
||
|
model=None,
|
||
|
dataloader=None,
|
||
|
save_dir=Path(""),
|
||
|
plots=True,
|
||
|
callbacks=Callbacks(),
|
||
|
compute_loss=None,
|
||
|
):
|
||
|
"""
|
||
|
Evaluates a YOLOv5 model on a dataset and logs performance metrics.
|
||
|
|
||
|
Args:
|
||
|
data (str | dict): Path to a dataset YAML file or a dataset dictionary.
|
||
|
weights (str | list[str], optional): Path to the model weights file(s). Supports various formats including PyTorch,
|
||
|
TorchScript, ONNX, OpenVINO, TensorRT, CoreML, TensorFlow SavedModel, TensorFlow GraphDef, TensorFlow Lite,
|
||
|
TensorFlow Edge TPU, and PaddlePaddle.
|
||
|
batch_size (int, optional): Batch size for inference. Default is 32.
|
||
|
imgsz (int, optional): Input image size (pixels). Default is 640.
|
||
|
conf_thres (float, optional): Confidence threshold for object detection. Default is 0.001.
|
||
|
iou_thres (float, optional): IoU threshold for Non-Maximum Suppression (NMS). Default is 0.6.
|
||
|
max_det (int, optional): Maximum number of detections per image. Default is 300.
|
||
|
task (str, optional): Task type - 'train', 'val', 'test', 'speed', or 'study'. Default is 'val'.
|
||
|
device (str, optional): Device to use for computation, e.g., '0' or '0,1,2,3' for CUDA or 'cpu' for CPU. Default is ''.
|
||
|
workers (int, optional): Number of dataloader workers. Default is 8.
|
||
|
single_cls (bool, optional): Treat dataset as a single class. Default is False.
|
||
|
augment (bool, optional): Enable augmented inference. Default is False.
|
||
|
verbose (bool, optional): Enable verbose output. Default is False.
|
||
|
save_txt (bool, optional): Save results to *.txt files. Default is False.
|
||
|
save_hybrid (bool, optional): Save label and prediction hybrid results to *.txt files. Default is False.
|
||
|
save_conf (bool, optional): Save confidences in --save-txt labels. Default is False.
|
||
|
save_json (bool, optional): Save a COCO-JSON results file. Default is False.
|
||
|
project (str | Path, optional): Directory to save results. Default is ROOT/'runs/val'.
|
||
|
name (str, optional): Name of the run. Default is 'exp'.
|
||
|
exist_ok (bool, optional): Overwrite existing project/name without incrementing. Default is False.
|
||
|
half (bool, optional): Use FP16 half-precision inference. Default is True.
|
||
|
dnn (bool, optional): Use OpenCV DNN for ONNX inference. Default is False.
|
||
|
model (torch.nn.Module, optional): Model object for training. Default is None.
|
||
|
dataloader (torch.utils.data.DataLoader, optional): Dataloader object. Default is None.
|
||
|
save_dir (Path, optional): Directory to save results. Default is Path('').
|
||
|
plots (bool, optional): Plot validation images and metrics. Default is True.
|
||
|
callbacks (utils.callbacks.Callbacks, optional): Callbacks for logging and monitoring. Default is Callbacks().
|
||
|
compute_loss (function, optional): Loss function for training. Default is None.
|
||
|
|
||
|
Returns:
|
||
|
dict: Contains performance metrics including precision, recall, mAP50, and mAP50-95.
|
||
|
"""
|
||
|
# Initialize/load model and set device
|
||
|
training = model is not None
|
||
|
if training: # called by train.py
|
||
|
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
|
||
|
half &= device.type != "cpu" # half precision only supported on CUDA
|
||
|
model.half() if half else model.float()
|
||
|
else: # called directly
|
||
|
device = select_device(device, batch_size=batch_size)
|
||
|
|
||
|
# Directories
|
||
|
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
||
|
(save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
||
|
|
||
|
# Load model
|
||
|
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
||
|
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
|
||
|
imgsz = check_img_size(imgsz, s=stride) # check image size
|
||
|
half = model.fp16 # FP16 supported on limited backends with CUDA
|
||
|
if engine:
|
||
|
batch_size = model.batch_size
|
||
|
else:
|
||
|
device = model.device
|
||
|
if not (pt or jit):
|
||
|
batch_size = 1 # export.py models default to batch-size 1
|
||
|
LOGGER.info(f"Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models")
|
||
|
|
||
|
# Data
|
||
|
data = check_dataset(data) # check
|
||
|
|
||
|
# Configure
|
||
|
model.eval()
|
||
|
cuda = device.type != "cpu"
|
||
|
is_coco = isinstance(data.get("val"), str) and data["val"].endswith(f"coco{os.sep}val2017.txt") # COCO dataset
|
||
|
nc = 1 if single_cls else int(data["nc"]) # number of classes
|
||
|
iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95
|
||
|
niou = iouv.numel()
|
||
|
|
||
|
# Dataloader
|
||
|
if not training:
|
||
|
if pt and not single_cls: # check --weights are trained on --data
|
||
|
ncm = model.model.nc
|
||
|
assert ncm == nc, (
|
||
|
f"{weights} ({ncm} classes) trained on different --data than what you passed ({nc} "
|
||
|
f"classes). Pass correct combination of --weights and --data that are trained together."
|
||
|
)
|
||
|
model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup
|
||
|
pad, rect = (0.0, False) if task == "speed" else (0.5, pt) # square inference for benchmarks
|
||
|
task = task if task in ("train", "val", "test") else "val" # path to train/val/test images
|
||
|
dataloader = create_dataloader(
|
||
|
data[task],
|
||
|
imgsz,
|
||
|
batch_size,
|
||
|
stride,
|
||
|
single_cls,
|
||
|
pad=pad,
|
||
|
rect=rect,
|
||
|
workers=workers,
|
||
|
prefix=colorstr(f"{task}: "),
|
||
|
)[0]
|
||
|
|
||
|
seen = 0
|
||
|
confusion_matrix = ConfusionMatrix(nc=nc)
|
||
|
names = model.names if hasattr(model, "names") else model.module.names # get class names
|
||
|
if isinstance(names, (list, tuple)): # old format
|
||
|
names = dict(enumerate(names))
|
||
|
class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
|
||
|
s = ("%22s" + "%11s" * 6) % ("Class", "Images", "Instances", "P", "R", "mAP50", "mAP50-95")
|
||
|
tp, fp, p, r, f1, mp, mr, map50, ap50, map = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
|
||
|
dt = Profile(device=device), Profile(device=device), Profile(device=device) # profiling times
|
||
|
loss = torch.zeros(3, device=device)
|
||
|
jdict, stats, ap, ap_class = [], [], [], []
|
||
|
callbacks.run("on_val_start")
|
||
|
pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar
|
||
|
for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
|
||
|
callbacks.run("on_val_batch_start")
|
||
|
with dt[0]:
|
||
|
if cuda:
|
||
|
im = im.to(device, non_blocking=True)
|
||
|
targets = targets.to(device)
|
||
|
im = im.half() if half else im.float() # uint8 to fp16/32
|
||
|
im /= 255 # 0 - 255 to 0.0 - 1.0
|
||
|
nb, _, height, width = im.shape # batch size, channels, height, width
|
||
|
|
||
|
# Inference
|
||
|
with dt[1]:
|
||
|
preds, train_out = model(im) if compute_loss else (model(im, augment=augment), None)
|
||
|
|
||
|
# Loss
|
||
|
if compute_loss:
|
||
|
loss += compute_loss(train_out, targets)[1] # box, obj, cls
|
||
|
|
||
|
# NMS
|
||
|
targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels
|
||
|
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
|
||
|
with dt[2]:
|
||
|
preds = non_max_suppression(
|
||
|
preds, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls, max_det=max_det
|
||
|
)
|
||
|
|
||
|
# Metrics
|
||
|
for si, pred in enumerate(preds):
|
||
|
labels = targets[targets[:, 0] == si, 1:]
|
||
|
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
|
||
|
path, shape = Path(paths[si]), shapes[si][0]
|
||
|
correct = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
|
||
|
seen += 1
|
||
|
|
||
|
if npr == 0:
|
||
|
if nl:
|
||
|
stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0]))
|
||
|
if plots:
|
||
|
confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
|
||
|
continue
|
||
|
|
||
|
# Predictions
|
||
|
if single_cls:
|
||
|
pred[:, 5] = 0
|
||
|
predn = pred.clone()
|
||
|
scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
|
||
|
|
||
|
# Evaluate
|
||
|
if nl:
|
||
|
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
|
||
|
scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
|
||
|
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
|
||
|
correct = process_batch(predn, labelsn, iouv)
|
||
|
if plots:
|
||
|
confusion_matrix.process_batch(predn, labelsn)
|
||
|
stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls)
|
||
|
|
||
|
# Save/log
|
||
|
if save_txt:
|
||
|
(save_dir / "labels").mkdir(parents=True, exist_ok=True)
|
||
|
save_one_txt(predn, save_conf, shape, file=save_dir / "labels" / f"{path.stem}.txt")
|
||
|
if save_json:
|
||
|
save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
|
||
|
callbacks.run("on_val_image_end", pred, predn, path, names, im[si])
|
||
|
|
||
|
# Plot images
|
||
|
if plots and batch_i < 3:
|
||
|
plot_images(im, targets, paths, save_dir / f"val_batch{batch_i}_labels.jpg", names) # labels
|
||
|
plot_images(im, output_to_target(preds), paths, save_dir / f"val_batch{batch_i}_pred.jpg", names) # pred
|
||
|
|
||
|
callbacks.run("on_val_batch_end", batch_i, im, targets, paths, shapes, preds)
|
||
|
|
||
|
# Compute metrics
|
||
|
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy
|
||
|
if len(stats) and stats[0].any():
|
||
|
tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
|
||
|
ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
|
||
|
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
|
||
|
nt = np.bincount(stats[3].astype(int), minlength=nc) # number of targets per class
|
||
|
|
||
|
# Print results
|
||
|
pf = "%22s" + "%11i" * 2 + "%11.3g" * 4 # print format
|
||
|
LOGGER.info(pf % ("all", seen, nt.sum(), mp, mr, map50, map))
|
||
|
if nt.sum() == 0:
|
||
|
LOGGER.warning(f"WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels")
|
||
|
|
||
|
# Print results per class
|
||
|
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
|
||
|
for i, c in enumerate(ap_class):
|
||
|
LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
|
||
|
|
||
|
# Print speeds
|
||
|
t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image
|
||
|
if not training:
|
||
|
shape = (batch_size, 3, imgsz, imgsz)
|
||
|
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}" % t)
|
||
|
|
||
|
# Plots
|
||
|
if plots:
|
||
|
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
|
||
|
callbacks.run("on_val_end", nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
|
||
|
|
||
|
# Save JSON
|
||
|
if save_json and len(jdict):
|
||
|
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else "" # weights
|
||
|
anno_json = str(Path("../datasets/coco/annotations/instances_val2017.json")) # annotations
|
||
|
if not os.path.exists(anno_json):
|
||
|
anno_json = os.path.join(data["path"], "annotations", "instances_val2017.json")
|
||
|
pred_json = str(save_dir / f"{w}_predictions.json") # predictions
|
||
|
LOGGER.info(f"\nEvaluating pycocotools mAP... saving {pred_json}...")
|
||
|
with open(pred_json, "w") as f:
|
||
|
json.dump(jdict, f)
|
||
|
|
||
|
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
||
|
check_requirements("pycocotools>=2.0.6")
|
||
|
from pycocotools.coco import COCO
|
||
|
from pycocotools.cocoeval import COCOeval
|
||
|
|
||
|
anno = COCO(anno_json) # init annotations api
|
||
|
pred = anno.loadRes(pred_json) # init predictions api
|
||
|
eval = COCOeval(anno, pred, "bbox")
|
||
|
if is_coco:
|
||
|
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # image IDs to evaluate
|
||
|
eval.evaluate()
|
||
|
eval.accumulate()
|
||
|
eval.summarize()
|
||
|
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
|
||
|
except Exception as e:
|
||
|
LOGGER.info(f"pycocotools unable to run: {e}")
|
||
|
|
||
|
# Return results
|
||
|
model.float() # for training
|
||
|
if not training:
|
||
|
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
|
||
|
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
||
|
maps = np.zeros(nc) + map
|
||
|
for i, c in enumerate(ap_class):
|
||
|
maps[c] = ap[i]
|
||
|
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
|
||
|
|
||
|
|
||
|
def parse_opt():
|
||
|
"""
|
||
|
Parse command-line options for configuring YOLOv5 model inference.
|
||
|
|
||
|
Args:
|
||
|
data (str, optional): Path to the dataset YAML file. Default is 'data/coco128.yaml'.
|
||
|
weights (list[str], optional): List of paths to model weight files. Default is 'yolov5s.pt'.
|
||
|
batch_size (int, optional): Batch size for inference. Default is 32.
|
||
|
imgsz (int, optional): Inference image size in pixels. Default is 640.
|
||
|
conf_thres (float, optional): Confidence threshold for predictions. Default is 0.001.
|
||
|
iou_thres (float, optional): IoU threshold for Non-Max Suppression (NMS). Default is 0.6.
|
||
|
max_det (int, optional): Maximum number of detections per image. Default is 300.
|
||
|
task (str, optional): Task type - options are 'train', 'val', 'test', 'speed', or 'study'. Default is 'val'.
|
||
|
device (str, optional): Device to run the model on. e.g., '0' or '0,1,2,3' or 'cpu'. Default is empty to let the system choose automatically.
|
||
|
workers (int, optional): Maximum number of dataloader workers per rank in DDP mode. Default is 8.
|
||
|
single_cls (bool, optional): If set, treats the dataset as a single-class dataset. Default is False.
|
||
|
augment (bool, optional): If set, performs augmented inference. Default is False.
|
||
|
verbose (bool, optional): If set, reports mAP by class. Default is False.
|
||
|
save_txt (bool, optional): If set, saves results to *.txt files. Default is False.
|
||
|
save_hybrid (bool, optional): If set, saves label+prediction hybrid results to *.txt files. Default is False.
|
||
|
save_conf (bool, optional): If set, saves confidences in --save-txt labels. Default is False.
|
||
|
save_json (bool, optional): If set, saves results to a COCO-JSON file. Default is False.
|
||
|
project (str, optional): Project directory to save results to. Default is 'runs/val'.
|
||
|
name (str, optional): Name of the directory to save results to. Default is 'exp'.
|
||
|
exist_ok (bool, optional): If set, existing directory will not be incremented. Default is False.
|
||
|
half (bool, optional): If set, uses FP16 half-precision inference. Default is False.
|
||
|
dnn (bool, optional): If set, uses OpenCV DNN for ONNX inference. Default is False.
|
||
|
|
||
|
Returns:
|
||
|
argparse.Namespace: Parsed command-line options.
|
||
|
|
||
|
Notes:
|
||
|
- The '--data' parameter is checked to ensure it ends with 'coco.yaml' if '--save-json' is set.
|
||
|
- The '--save-txt' option is set to True if '--save-hybrid' is enabled.
|
||
|
- Args are printed using `print_args` to facilitate debugging.
|
||
|
|
||
|
Example:
|
||
|
To validate a trained YOLOv5 model on a COCO dataset:
|
||
|
```python
|
||
|
$ python val.py --weights yolov5s.pt --data coco128.yaml --img 640
|
||
|
```
|
||
|
Different model formats could be used instead of `yolov5s.pt`:
|
||
|
```python
|
||
|
$ python val.py --weights yolov5s.pt yolov5s.torchscript yolov5s.onnx yolov5s_openvino_model yolov5s.engine
|
||
|
```
|
||
|
Additional options include saving results in different formats, selecting devices, and more.
|
||
|
"""
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
|
||
|
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model path(s)")
|
||
|
parser.add_argument("--batch-size", type=int, default=32, help="batch size")
|
||
|
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="inference size (pixels)")
|
||
|
parser.add_argument("--conf-thres", type=float, default=0.001, help="confidence threshold")
|
||
|
parser.add_argument("--iou-thres", type=float, default=0.6, help="NMS IoU threshold")
|
||
|
parser.add_argument("--max-det", type=int, default=300, help="maximum detections per image")
|
||
|
parser.add_argument("--task", default="val", help="train, val, test, speed or study")
|
||
|
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
|
||
|
parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
|
||
|
parser.add_argument("--single-cls", action="store_true", help="treat as single-class dataset")
|
||
|
parser.add_argument("--augment", action="store_true", help="augmented inference")
|
||
|
parser.add_argument("--verbose", action="store_true", help="report mAP by class")
|
||
|
parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
|
||
|
parser.add_argument("--save-hybrid", action="store_true", help="save label+prediction hybrid results to *.txt")
|
||
|
parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")
|
||
|
parser.add_argument("--save-json", action="store_true", help="save a COCO-JSON results file")
|
||
|
parser.add_argument("--project", default=ROOT / "runs/val", help="save to project/name")
|
||
|
parser.add_argument("--name", default="exp", help="save to project/name")
|
||
|
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
|
||
|
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
|
||
|
parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
|
||
|
opt = parser.parse_args()
|
||
|
opt.data = check_yaml(opt.data) # check YAML
|
||
|
opt.save_json |= opt.data.endswith("coco.yaml")
|
||
|
opt.save_txt |= opt.save_hybrid
|
||
|
print_args(vars(opt))
|
||
|
return opt
|
||
|
|
||
|
|
||
|
def main(opt):
|
||
|
"""
|
||
|
Executes YOLOv5 tasks like training, validation, testing, speed, and study benchmarks based on provided options.
|
||
|
|
||
|
Args:
|
||
|
opt (argparse.Namespace): Parsed command-line options.
|
||
|
This includes values for parameters like 'data', 'weights', 'batch_size', 'imgsz', 'conf_thres',
|
||
|
'iou_thres', 'max_det', 'task', 'device', 'workers', 'single_cls', 'augment', 'verbose', 'save_txt',
|
||
|
'save_hybrid', 'save_conf', 'save_json', 'project', 'name', 'exist_ok', 'half', and 'dnn', essential
|
||
|
for configuring the YOLOv5 tasks.
|
||
|
|
||
|
Returns:
|
||
|
None
|
||
|
|
||
|
Examples:
|
||
|
To validate a trained YOLOv5 model on the COCO dataset with a specific weights file, use:
|
||
|
```python
|
||
|
$ python val.py --weights yolov5s.pt --data coco128.yaml --img 640
|
||
|
```
|
||
|
"""
|
||
|
check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
|
||
|
|
||
|
if opt.task in ("train", "val", "test"): # run normally
|
||
|
if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
|
||
|
LOGGER.info(f"WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results")
|
||
|
if opt.save_hybrid:
|
||
|
LOGGER.info("WARNING ⚠️ --save-hybrid will return high mAP from hybrid labels, not from predictions alone")
|
||
|
run(**vars(opt))
|
||
|
|
||
|
else:
|
||
|
weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
|
||
|
opt.half = torch.cuda.is_available() and opt.device != "cpu" # FP16 for fastest results
|
||
|
if opt.task == "speed": # speed benchmarks
|
||
|
# python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
|
||
|
opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
|
||
|
for opt.weights in weights:
|
||
|
run(**vars(opt), plots=False)
|
||
|
|
||
|
elif opt.task == "study": # speed vs mAP benchmarks
|
||
|
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
|
||
|
for opt.weights in weights:
|
||
|
f = f"study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt" # filename to save to
|
||
|
x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
|
||
|
for opt.imgsz in x: # img-size
|
||
|
LOGGER.info(f"\nRunning {f} --imgsz {opt.imgsz}...")
|
||
|
r, _, t = run(**vars(opt), plots=False)
|
||
|
y.append(r + t) # results and times
|
||
|
np.savetxt(f, y, fmt="%10.4g") # save
|
||
|
subprocess.run(["zip", "-r", "study.zip", "study_*.txt"])
|
||
|
plot_val_study(x=x) # plot
|
||
|
else:
|
||
|
raise NotImplementedError(f'--task {opt.task} not in ("train", "val", "test", "speed", "study")')
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
opt = parse_opt()
|
||
|
main(opt)
|