# Ultralytics YOLOv5 🚀, AGPL-3.0 license # VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University # Example usage: python train.py --data VisDrone.yaml # parent # ├── yolov5 # └── datasets # └── VisDrone ← downloads here (2.3 GB) # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: ../datasets/VisDrone # dataset root dir train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images # Classes names: 0: pedestrian 1: people 2: bicycle 3: car 4: van 5: truck 6: tricycle 7: awning-tricycle 8: bus 9: motor # Download script/URL (optional) --------------------------------------------------------------------------------------- download: | from utils.general import download, os, Path def visdrone2yolo(dir): from PIL import Image from tqdm import tqdm def convert_box(size, box): # Convert VisDrone box to YOLO xywh box dw = 1. / size[0] dh = 1. / size[1] return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh (dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}') for f in pbar: img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size lines = [] with open(f, 'r') as file: # read annotation.txt for row in [x.split(',') for x in file.read().strip().splitlines()]: if row[4] == '0': # VisDrone 'ignored regions' class 0 continue cls = int(row[5]) - 1 box = convert_box(img_size, tuple(map(int, row[:4]))) lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n") with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl: fl.writelines(lines) # write label.txt # Download dir = Path(yaml['path']) # dataset root dir urls = ['https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-train.zip', 'https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-val.zip', 'https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-dev.zip', 'https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-challenge.zip'] download(urls, dir=dir, curl=True, threads=4) # Convert for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev': visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels