# Ultralytics YOLOv5 🚀, AGPL-3.0 license # COCO128 dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics # Example usage: python train.py --data coco128.yaml # parent # ├── yolov5 # └── datasets # └── coco128 ← downloads here (7 MB) # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: ../datasets/coco128 # dataset root dir train: images/train2017 # train images (relative to 'path') 128 images val: images/train2017 # val images (relative to 'path') 128 images test: # test images (optional) # Classes names: 0: love 1: ok 2: quiet # 3: motorcycle # 4: airplane # 5: bus # 6: train # 7: truck # 8: boat # 9: traffic light # 10: fire hydrant # 11: stop sign # 12: parking meter # 13: bench # 14: bird # 15: cat # 16: dog # 17: horse # 18: sheep # 19: cow # 20: elephant # 21: bear # 22: zebra # 23: giraffe # 24: backpack # 25: umbrella # 26: handbag # 27: tie # 28: suitcase # 29: frisbee # 30: skis # 31: snowboard # 32: sports ball # 33: kite # 34: baseball bat # 35: baseball glove # 36: skateboard # 37: surfboard # 38: tennis racket # 39: bottle # 40: wine glass # 41: cup # 42: fork # 43: knife # 44: spoon # 45: bowl # 46: banana # 47: apple # 48: sandwich # 49: orange # 50: broccoli # 51: carrot # 52: hot dog # 53: pizza # 54: donut # 55: cake # 56: chair # 57: couch # 58: potted plant # 59: bed # 60: dining table # 61: toilet # 62: tv # 63: laptop # 64: mouse # 65: remote # 66: keyboard # 67: cell phone # 68: microwave # 69: oven # 70: toaster # 71: sink # 72: refrigerator # 73: book # 74: clock # 75: vase # 76: scissors # 77: teddy bear # 78: hair drier # 79: toothbrush # Download script/URL (optional) #download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128.zip