# Ultralytics YOLOv5 🚀, AGPL-3.0 license """ Validate a trained YOLOv5 detection model on a detection dataset. Usage: $ python val.py --weights yolov5s.pt --data coco128.yaml --img 640 Usage - formats: $ python val.py --weights yolov5s.pt # PyTorch yolov5s.torchscript # TorchScript yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn yolov5s_openvino_model # OpenVINO yolov5s.engine # TensorRT yolov5s.mlpackage # CoreML (macOS-only) yolov5s_saved_model # TensorFlow SavedModel yolov5s.pb # TensorFlow GraphDef yolov5s.tflite # TensorFlow Lite yolov5s_edgetpu.tflite # TensorFlow Edge TPU yolov5s_paddle_model # PaddlePaddle """ import argparse import json import os import subprocess import sys from pathlib import Path import numpy as np import torch from tqdm import tqdm FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative from models.common import DetectMultiBackend from utils.callbacks import Callbacks from utils.dataloaders import create_dataloader from utils.general import ( LOGGER, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size, check_requirements, check_yaml, coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args, scale_boxes, xywh2xyxy, xyxy2xywh, ) from utils.metrics import ConfusionMatrix, ap_per_class, box_iou from utils.plots import output_to_target, plot_images, plot_val_study from utils.torch_utils import select_device, smart_inference_mode def save_one_txt(predn, save_conf, shape, file): """ Saves one detection result to a txt file in normalized xywh format, optionally including confidence. Args: predn (torch.Tensor): Predicted bounding boxes and associated confidence scores and classes in xyxy format, tensor of shape (N, 6) where N is the number of detections. save_conf (bool): If True, saves the confidence scores along with the bounding box coordinates. shape (tuple): Shape of the original image as (height, width). file (str | Path): File path where the result will be saved. Returns: None Notes: The xyxy bounding box format represents the coordinates (xmin, ymin, xmax, ymax). The xywh format represents the coordinates (center_x, center_y, width, height) and is normalized by the width and height of the image. Example: ```python predn = torch.tensor([[10, 20, 30, 40, 0.9, 1]]) # example prediction save_one_txt(predn, save_conf=True, shape=(640, 480), file="output.txt") ``` """ gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh for *xyxy, conf, cls in predn.tolist(): xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format with open(file, "a") as f: f.write(("%g " * len(line)).rstrip() % line + "\n") def save_one_json(predn, jdict, path, class_map): """ Saves a single JSON detection result, including image ID, category ID, bounding box, and confidence score. Args: predn (torch.Tensor): Predicted detections in xyxy format with shape (n, 6) where n is the number of detections. The tensor should contain [x_min, y_min, x_max, y_max, confidence, class_id] for each detection. jdict (list[dict]): List to collect JSON formatted detection results. path (pathlib.Path): Path object of the image file, used to extract image_id. class_map (dict[int, int]): Mapping from model class indices to dataset-specific category IDs. Returns: None: Appends detection results as dictionaries to `jdict` list in-place. Example: ```python predn = torch.tensor([[100, 50, 200, 150, 0.9, 0], [50, 30, 100, 80, 0.8, 1]]) jdict = [] path = Path("42.jpg") class_map = {0: 18, 1: 19} save_one_json(predn, jdict, path, class_map) ``` This will append to `jdict`: ``` [ {'image_id': 42, 'category_id': 18, 'bbox': [125.0, 75.0, 100.0, 100.0], 'score': 0.9}, {'image_id': 42, 'category_id': 19, 'bbox': [75.0, 55.0, 50.0, 50.0], 'score': 0.8} ] ``` Notes: The `bbox` values are formatted as [x, y, width, height], where x and y represent the top-left corner of the box. """ image_id = int(path.stem) if path.stem.isnumeric() else path.stem box = xyxy2xywh(predn[:, :4]) # xywh box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner for p, b in zip(predn.tolist(), box.tolist()): jdict.append( { "image_id": image_id, "category_id": class_map[int(p[5])], "bbox": [round(x, 3) for x in b], "score": round(p[4], 5), } ) def process_batch(detections, labels, iouv): """ Return a correct prediction matrix given detections and labels at various IoU thresholds. Args: detections (np.ndarray): Array of shape (N, 6) where each row corresponds to a detection with format [x1, y1, x2, y2, conf, class]. labels (np.ndarray): Array of shape (M, 5) where each row corresponds to a ground truth label with format [class, x1, y1, x2, y2]. iouv (np.ndarray): Array of IoU thresholds to evaluate at. Returns: correct (np.ndarray): A binary array of shape (N, len(iouv)) indicating whether each detection is a true positive for each IoU threshold. There are 10 IoU levels used in the evaluation. Example: ```python detections = np.array([[50, 50, 200, 200, 0.9, 1], [30, 30, 150, 150, 0.7, 0]]) labels = np.array([[1, 50, 50, 200, 200]]) iouv = np.linspace(0.5, 0.95, 10) correct = process_batch(detections, labels, iouv) ``` Notes: - This function is used as part of the evaluation pipeline for object detection models. - IoU (Intersection over Union) is a common evaluation metric for object detection performance. """ correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool) iou = box_iou(labels[:, 1:], detections[:, :4]) correct_class = labels[:, 0:1] == detections[:, 5] for i in range(len(iouv)): x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match if x[0].shape[0]: matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou] if x[0].shape[0] > 1: matches = matches[matches[:, 2].argsort()[::-1]] matches = matches[np.unique(matches[:, 1], return_index=True)[1]] # matches = matches[matches[:, 2].argsort()[::-1]] matches = matches[np.unique(matches[:, 0], return_index=True)[1]] correct[matches[:, 1].astype(int), i] = True return torch.tensor(correct, dtype=torch.bool, device=iouv.device) @smart_inference_mode() def run( data, weights=None, # model.pt path(s) batch_size=32, # batch size imgsz=640, # inference size (pixels) conf_thres=0.001, # confidence threshold iou_thres=0.6, # NMS IoU threshold max_det=300, # maximum detections per image task="val", # train, val, test, speed or study device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu workers=8, # max dataloader workers (per RANK in DDP mode) single_cls=False, # treat as single-class dataset augment=False, # augmented inference verbose=False, # verbose output save_txt=False, # save results to *.txt save_hybrid=False, # save label+prediction hybrid results to *.txt save_conf=False, # save confidences in --save-txt labels save_json=False, # save a COCO-JSON results file project=ROOT / "runs/val", # save to project/name name="exp", # save to project/name exist_ok=False, # existing project/name ok, do not increment half=True, # use FP16 half-precision inference dnn=False, # use OpenCV DNN for ONNX inference model=None, dataloader=None, save_dir=Path(""), plots=True, callbacks=Callbacks(), compute_loss=None, ): """ Evaluates a YOLOv5 model on a dataset and logs performance metrics. Args: data (str | dict): Path to a dataset YAML file or a dataset dictionary. weights (str | list[str], optional): Path to the model weights file(s). Supports various formats including PyTorch, TorchScript, ONNX, OpenVINO, TensorRT, CoreML, TensorFlow SavedModel, TensorFlow GraphDef, TensorFlow Lite, TensorFlow Edge TPU, and PaddlePaddle. batch_size (int, optional): Batch size for inference. Default is 32. imgsz (int, optional): Input image size (pixels). Default is 640. conf_thres (float, optional): Confidence threshold for object detection. Default is 0.001. iou_thres (float, optional): IoU threshold for Non-Maximum Suppression (NMS). Default is 0.6. max_det (int, optional): Maximum number of detections per image. Default is 300. task (str, optional): Task type - 'train', 'val', 'test', 'speed', or 'study'. Default is 'val'. device (str, optional): Device to use for computation, e.g., '0' or '0,1,2,3' for CUDA or 'cpu' for CPU. Default is ''. workers (int, optional): Number of dataloader workers. Default is 8. single_cls (bool, optional): Treat dataset as a single class. Default is False. augment (bool, optional): Enable augmented inference. Default is False. verbose (bool, optional): Enable verbose output. Default is False. save_txt (bool, optional): Save results to *.txt files. Default is False. save_hybrid (bool, optional): Save label and prediction hybrid results to *.txt files. Default is False. save_conf (bool, optional): Save confidences in --save-txt labels. Default is False. save_json (bool, optional): Save a COCO-JSON results file. Default is False. project (str | Path, optional): Directory to save results. Default is ROOT/'runs/val'. name (str, optional): Name of the run. Default is 'exp'. exist_ok (bool, optional): Overwrite existing project/name without incrementing. Default is False. half (bool, optional): Use FP16 half-precision inference. Default is True. dnn (bool, optional): Use OpenCV DNN for ONNX inference. Default is False. model (torch.nn.Module, optional): Model object for training. Default is None. dataloader (torch.utils.data.DataLoader, optional): Dataloader object. Default is None. save_dir (Path, optional): Directory to save results. Default is Path(''). plots (bool, optional): Plot validation images and metrics. Default is True. callbacks (utils.callbacks.Callbacks, optional): Callbacks for logging and monitoring. Default is Callbacks(). compute_loss (function, optional): Loss function for training. Default is None. Returns: dict: Contains performance metrics including precision, recall, mAP50, and mAP50-95. """ # Initialize/load model and set device training = model is not None if training: # called by train.py device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model half &= device.type != "cpu" # half precision only supported on CUDA model.half() if half else model.float() else: # called directly device = select_device(device, batch_size=batch_size) # Directories save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run (save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir # Load model model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine imgsz = check_img_size(imgsz, s=stride) # check image size half = model.fp16 # FP16 supported on limited backends with CUDA if engine: batch_size = model.batch_size else: device = model.device if not (pt or jit): batch_size = 1 # export.py models default to batch-size 1 LOGGER.info(f"Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models") # Data data = check_dataset(data) # check # Configure model.eval() cuda = device.type != "cpu" is_coco = isinstance(data.get("val"), str) and data["val"].endswith(f"coco{os.sep}val2017.txt") # COCO dataset nc = 1 if single_cls else int(data["nc"]) # number of classes iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95 niou = iouv.numel() # Dataloader if not training: if pt and not single_cls: # check --weights are trained on --data ncm = model.model.nc assert ncm == nc, ( f"{weights} ({ncm} classes) trained on different --data than what you passed ({nc} " f"classes). Pass correct combination of --weights and --data that are trained together." ) model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup pad, rect = (0.0, False) if task == "speed" else (0.5, pt) # square inference for benchmarks task = task if task in ("train", "val", "test") else "val" # path to train/val/test images dataloader = create_dataloader( data[task], imgsz, batch_size, stride, single_cls, pad=pad, rect=rect, workers=workers, prefix=colorstr(f"{task}: "), )[0] seen = 0 confusion_matrix = ConfusionMatrix(nc=nc) names = model.names if hasattr(model, "names") else model.module.names # get class names if isinstance(names, (list, tuple)): # old format names = dict(enumerate(names)) class_map = coco80_to_coco91_class() if is_coco else list(range(1000)) s = ("%22s" + "%11s" * 6) % ("Class", "Images", "Instances", "P", "R", "mAP50", "mAP50-95") tp, fp, p, r, f1, mp, mr, map50, ap50, map = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 dt = Profile(device=device), Profile(device=device), Profile(device=device) # profiling times loss = torch.zeros(3, device=device) jdict, stats, ap, ap_class = [], [], [], [] callbacks.run("on_val_start") pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar for batch_i, (im, targets, paths, shapes) in enumerate(pbar): callbacks.run("on_val_batch_start") with dt[0]: if cuda: im = im.to(device, non_blocking=True) targets = targets.to(device) im = im.half() if half else im.float() # uint8 to fp16/32 im /= 255 # 0 - 255 to 0.0 - 1.0 nb, _, height, width = im.shape # batch size, channels, height, width # Inference with dt[1]: preds, train_out = model(im) if compute_loss else (model(im, augment=augment), None) # Loss if compute_loss: loss += compute_loss(train_out, targets)[1] # box, obj, cls # NMS targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling with dt[2]: preds = non_max_suppression( preds, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls, max_det=max_det ) # Metrics for si, pred in enumerate(preds): labels = targets[targets[:, 0] == si, 1:] nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions path, shape = Path(paths[si]), shapes[si][0] correct = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init seen += 1 if npr == 0: if nl: stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0])) if plots: confusion_matrix.process_batch(detections=None, labels=labels[:, 0]) continue # Predictions if single_cls: pred[:, 5] = 0 predn = pred.clone() scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred # Evaluate if nl: tbox = xywh2xyxy(labels[:, 1:5]) # target boxes scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels correct = process_batch(predn, labelsn, iouv) if plots: confusion_matrix.process_batch(predn, labelsn) stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls) # Save/log if save_txt: (save_dir / "labels").mkdir(parents=True, exist_ok=True) save_one_txt(predn, save_conf, shape, file=save_dir / "labels" / f"{path.stem}.txt") if save_json: save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary callbacks.run("on_val_image_end", pred, predn, path, names, im[si]) # Plot images if plots and batch_i < 3: plot_images(im, targets, paths, save_dir / f"val_batch{batch_i}_labels.jpg", names) # labels plot_images(im, output_to_target(preds), paths, save_dir / f"val_batch{batch_i}_pred.jpg", names) # pred callbacks.run("on_val_batch_end", batch_i, im, targets, paths, shapes, preds) # Compute metrics stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy if len(stats) and stats[0].any(): tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names) ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95 mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() nt = np.bincount(stats[3].astype(int), minlength=nc) # number of targets per class # Print results pf = "%22s" + "%11i" * 2 + "%11.3g" * 4 # print format LOGGER.info(pf % ("all", seen, nt.sum(), mp, mr, map50, map)) if nt.sum() == 0: LOGGER.warning(f"WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels") # Print results per class if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats): for i, c in enumerate(ap_class): LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) # Print speeds t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image if not training: shape = (batch_size, 3, imgsz, imgsz) LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}" % t) # Plots if plots: confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) callbacks.run("on_val_end", nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix) # Save JSON if save_json and len(jdict): w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else "" # weights anno_json = str(Path("../datasets/coco/annotations/instances_val2017.json")) # annotations if not os.path.exists(anno_json): anno_json = os.path.join(data["path"], "annotations", "instances_val2017.json") pred_json = str(save_dir / f"{w}_predictions.json") # predictions LOGGER.info(f"\nEvaluating pycocotools mAP... saving {pred_json}...") with open(pred_json, "w") as f: json.dump(jdict, f) try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb check_requirements("pycocotools>=2.0.6") from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval anno = COCO(anno_json) # init annotations api pred = anno.loadRes(pred_json) # init predictions api eval = COCOeval(anno, pred, "bbox") if is_coco: eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # image IDs to evaluate eval.evaluate() eval.accumulate() eval.summarize() map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5) except Exception as e: LOGGER.info(f"pycocotools unable to run: {e}") # Return results model.float() # for training if not training: s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else "" LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") maps = np.zeros(nc) + map for i, c in enumerate(ap_class): maps[c] = ap[i] return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t def parse_opt(): """ Parse command-line options for configuring YOLOv5 model inference. Args: data (str, optional): Path to the dataset YAML file. Default is 'data/coco128.yaml'. weights (list[str], optional): List of paths to model weight files. Default is 'yolov5s.pt'. batch_size (int, optional): Batch size for inference. Default is 32. imgsz (int, optional): Inference image size in pixels. Default is 640. conf_thres (float, optional): Confidence threshold for predictions. Default is 0.001. iou_thres (float, optional): IoU threshold for Non-Max Suppression (NMS). Default is 0.6. max_det (int, optional): Maximum number of detections per image. Default is 300. task (str, optional): Task type - options are 'train', 'val', 'test', 'speed', or 'study'. Default is 'val'. device (str, optional): Device to run the model on. e.g., '0' or '0,1,2,3' or 'cpu'. Default is empty to let the system choose automatically. workers (int, optional): Maximum number of dataloader workers per rank in DDP mode. Default is 8. single_cls (bool, optional): If set, treats the dataset as a single-class dataset. Default is False. augment (bool, optional): If set, performs augmented inference. Default is False. verbose (bool, optional): If set, reports mAP by class. Default is False. save_txt (bool, optional): If set, saves results to *.txt files. Default is False. save_hybrid (bool, optional): If set, saves label+prediction hybrid results to *.txt files. Default is False. save_conf (bool, optional): If set, saves confidences in --save-txt labels. Default is False. save_json (bool, optional): If set, saves results to a COCO-JSON file. Default is False. project (str, optional): Project directory to save results to. Default is 'runs/val'. name (str, optional): Name of the directory to save results to. Default is 'exp'. exist_ok (bool, optional): If set, existing directory will not be incremented. Default is False. half (bool, optional): If set, uses FP16 half-precision inference. Default is False. dnn (bool, optional): If set, uses OpenCV DNN for ONNX inference. Default is False. Returns: argparse.Namespace: Parsed command-line options. Notes: - The '--data' parameter is checked to ensure it ends with 'coco.yaml' if '--save-json' is set. - The '--save-txt' option is set to True if '--save-hybrid' is enabled. - Args are printed using `print_args` to facilitate debugging. Example: To validate a trained YOLOv5 model on a COCO dataset: ```python $ python val.py --weights yolov5s.pt --data coco128.yaml --img 640 ``` Different model formats could be used instead of `yolov5s.pt`: ```python $ python val.py --weights yolov5s.pt yolov5s.torchscript yolov5s.onnx yolov5s_openvino_model yolov5s.engine ``` Additional options include saving results in different formats, selecting devices, and more. """ parser = argparse.ArgumentParser() parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path") parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model path(s)") parser.add_argument("--batch-size", type=int, default=32, help="batch size") parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="inference size (pixels)") parser.add_argument("--conf-thres", type=float, default=0.001, help="confidence threshold") parser.add_argument("--iou-thres", type=float, default=0.6, help="NMS IoU threshold") parser.add_argument("--max-det", type=int, default=300, help="maximum detections per image") parser.add_argument("--task", default="val", help="train, val, test, speed or study") parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu") parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)") parser.add_argument("--single-cls", action="store_true", help="treat as single-class dataset") parser.add_argument("--augment", action="store_true", help="augmented inference") parser.add_argument("--verbose", action="store_true", help="report mAP by class") parser.add_argument("--save-txt", action="store_true", help="save results to *.txt") parser.add_argument("--save-hybrid", action="store_true", help="save label+prediction hybrid results to *.txt") parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels") parser.add_argument("--save-json", action="store_true", help="save a COCO-JSON results file") parser.add_argument("--project", default=ROOT / "runs/val", help="save to project/name") parser.add_argument("--name", default="exp", help="save to project/name") parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment") parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference") parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference") opt = parser.parse_args() opt.data = check_yaml(opt.data) # check YAML opt.save_json |= opt.data.endswith("coco.yaml") opt.save_txt |= opt.save_hybrid print_args(vars(opt)) return opt def main(opt): """ Executes YOLOv5 tasks like training, validation, testing, speed, and study benchmarks based on provided options. Args: opt (argparse.Namespace): Parsed command-line options. This includes values for parameters like 'data', 'weights', 'batch_size', 'imgsz', 'conf_thres', 'iou_thres', 'max_det', 'task', 'device', 'workers', 'single_cls', 'augment', 'verbose', 'save_txt', 'save_hybrid', 'save_conf', 'save_json', 'project', 'name', 'exist_ok', 'half', and 'dnn', essential for configuring the YOLOv5 tasks. Returns: None Examples: To validate a trained YOLOv5 model on the COCO dataset with a specific weights file, use: ```python $ python val.py --weights yolov5s.pt --data coco128.yaml --img 640 ``` """ check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop")) if opt.task in ("train", "val", "test"): # run normally if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466 LOGGER.info(f"WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results") if opt.save_hybrid: LOGGER.info("WARNING ⚠️ --save-hybrid will return high mAP from hybrid labels, not from predictions alone") run(**vars(opt)) else: weights = opt.weights if isinstance(opt.weights, list) else [opt.weights] opt.half = torch.cuda.is_available() and opt.device != "cpu" # FP16 for fastest results if opt.task == "speed": # speed benchmarks # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt... opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False for opt.weights in weights: run(**vars(opt), plots=False) elif opt.task == "study": # speed vs mAP benchmarks # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt... for opt.weights in weights: f = f"study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt" # filename to save to x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis for opt.imgsz in x: # img-size LOGGER.info(f"\nRunning {f} --imgsz {opt.imgsz}...") r, _, t = run(**vars(opt), plots=False) y.append(r + t) # results and times np.savetxt(f, y, fmt="%10.4g") # save subprocess.run(["zip", "-r", "study.zip", "study_*.txt"]) plot_val_study(x=x) # plot else: raise NotImplementedError(f'--task {opt.task} not in ("train", "val", "test", "speed", "study")') if __name__ == "__main__": opt = parse_opt() main(opt)