# Ultralytics YOLOv5 🚀, AGPL-3.0 license """ Run YOLOv5 benchmarks on all supported export formats. Format | `export.py --include` | Model --- | --- | --- PyTorch | - | yolov5s.pt TorchScript | `torchscript` | yolov5s.torchscript ONNX | `onnx` | yolov5s.onnx OpenVINO | `openvino` | yolov5s_openvino_model/ TensorRT | `engine` | yolov5s.engine CoreML | `coreml` | yolov5s.mlpackage TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/ TensorFlow GraphDef | `pb` | yolov5s.pb TensorFlow Lite | `tflite` | yolov5s.tflite TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite TensorFlow.js | `tfjs` | yolov5s_web_model/ Requirements: $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU $ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT Usage: $ python benchmarks.py --weights yolov5s.pt --img 640 """ import argparse import platform import sys import time from pathlib import Path import pandas as pd FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH # ROOT = ROOT.relative_to(Path.cwd()) # relative import export from models.experimental import attempt_load from models.yolo import SegmentationModel from segment.val import run as val_seg from utils import notebook_init from utils.general import LOGGER, check_yaml, file_size, print_args from utils.torch_utils import select_device from val import run as val_det def run( weights=ROOT / "yolov5s.pt", # weights path imgsz=640, # inference size (pixels) batch_size=1, # batch size data=ROOT / "data/coco128.yaml", # dataset.yaml path device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu half=False, # use FP16 half-precision inference test=False, # test exports only pt_only=False, # test PyTorch only hard_fail=False, # throw error on benchmark failure ): """ Run YOLOv5 benchmarks on multiple export formats and log results for model performance evaluation. Args: weights (Path | str): Path to the model weights file (default: ROOT / "yolov5s.pt"). imgsz (int): Inference size in pixels (default: 640). batch_size (int): Batch size for inference (default: 1). data (Path | str): Path to the dataset.yaml file (default: ROOT / "data/coco128.yaml"). device (str): CUDA device, e.g., '0' or '0,1,2,3' or 'cpu' (default: ""). half (bool): Use FP16 half-precision inference (default: False). test (bool): Test export formats only (default: False). pt_only (bool): Test PyTorch format only (default: False). hard_fail (bool): Throw an error on benchmark failure if True (default: False). Returns: None. Logs information about the benchmark results, including the format, size, mAP50-95, and inference time. Notes: Supported export formats and models include PyTorch, TorchScript, ONNX, OpenVINO, TensorRT, CoreML, TensorFlow SavedModel, TensorFlow GraphDef, TensorFlow Lite, and TensorFlow Edge TPU. Edge TPU and TF.js are unsupported. Example: ```python $ python benchmarks.py --weights yolov5s.pt --img 640 ``` Usage: Install required packages: $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU support $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU support $ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT Run benchmarks: $ python benchmarks.py --weights yolov5s.pt --img 640 """ y, t = [], time.time() device = select_device(device) model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc. for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU) try: assert i not in (9, 10), "inference not supported" # Edge TPU and TF.js are unsupported assert i != 5 or platform.system() == "Darwin", "inference only supported on macOS>=10.13" # CoreML if "cpu" in device.type: assert cpu, "inference not supported on CPU" if "cuda" in device.type: assert gpu, "inference not supported on GPU" # Export if f == "-": w = weights # PyTorch format else: w = export.run( weights=weights, imgsz=[imgsz], include=[f], batch_size=batch_size, device=device, half=half )[-1] # all others assert suffix in str(w), "export failed" # Validate if model_type == SegmentationModel: result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half) metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls)) else: # DetectionModel: result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half) metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls)) speed = result[2][1] # times (preprocess, inference, postprocess) y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference except Exception as e: if hard_fail: assert type(e) is AssertionError, f"Benchmark --hard-fail for {name}: {e}" LOGGER.warning(f"WARNING ⚠️ Benchmark failure for {name}: {e}") y.append([name, None, None, None]) # mAP, t_inference if pt_only and i == 0: break # break after PyTorch # Print results LOGGER.info("\n") parse_opt() notebook_init() # print system info c = ["Format", "Size (MB)", "mAP50-95", "Inference time (ms)"] if map else ["Format", "Export", "", ""] py = pd.DataFrame(y, columns=c) LOGGER.info(f"\nBenchmarks complete ({time.time() - t:.2f}s)") LOGGER.info(str(py if map else py.iloc[:, :2])) if hard_fail and isinstance(hard_fail, str): metrics = py["mAP50-95"].array # values to compare to floor floor = eval(hard_fail) # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n assert all(x > floor for x in metrics if pd.notna(x)), f"HARD FAIL: mAP50-95 < floor {floor}" return py def test( weights=ROOT / "yolov5s.pt", # weights path imgsz=640, # inference size (pixels) batch_size=1, # batch size data=ROOT / "data/coco128.yaml", # dataset.yaml path device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu half=False, # use FP16 half-precision inference test=False, # test exports only pt_only=False, # test PyTorch only hard_fail=False, # throw error on benchmark failure ): """ Run YOLOv5 export tests for all supported formats and log the results, including export statuses. Args: weights (Path | str): Path to the model weights file (.pt format). Default is 'ROOT / "yolov5s.pt"'. imgsz (int): Inference image size (in pixels). Default is 640. batch_size (int): Batch size for testing. Default is 1. data (Path | str): Path to the dataset configuration file (.yaml format). Default is 'ROOT / "data/coco128.yaml"'. device (str): Device for running the tests, can be 'cpu' or a specific CUDA device ('0', '0,1,2,3', etc.). Default is an empty string. half (bool): Use FP16 half-precision for inference if True. Default is False. test (bool): Test export formats only without running inference. Default is False. pt_only (bool): Test only the PyTorch model if True. Default is False. hard_fail (bool): Raise error on export or test failure if True. Default is False. Returns: pd.DataFrame: DataFrame containing the results of the export tests, including format names and export statuses. Examples: ```python $ python benchmarks.py --weights yolov5s.pt --img 640 ``` Notes: Supported export formats and models include PyTorch, TorchScript, ONNX, OpenVINO, TensorRT, CoreML, TensorFlow SavedModel, TensorFlow GraphDef, TensorFlow Lite, and TensorFlow Edge TPU. Edge TPU and TF.js are unsupported. Usage: Install required packages: $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU support $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU support $ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT Run export tests: $ python benchmarks.py --weights yolov5s.pt --img 640 """ y, t = [], time.time() device = select_device(device) for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable) try: w = ( weights if f == "-" else export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] ) # weights assert suffix in str(w), "export failed" y.append([name, True]) except Exception: y.append([name, False]) # mAP, t_inference # Print results LOGGER.info("\n") parse_opt() notebook_init() # print system info py = pd.DataFrame(y, columns=["Format", "Export"]) LOGGER.info(f"\nExports complete ({time.time() - t:.2f}s)") LOGGER.info(str(py)) return py def parse_opt(): """ Parses command-line arguments for YOLOv5 model inference configuration. Args: weights (str): The path to the weights file. Defaults to 'ROOT / "yolov5s.pt"'. imgsz (int): Inference size in pixels. Defaults to 640. batch_size (int): Batch size. Defaults to 1. data (str): Path to the dataset YAML file. Defaults to 'ROOT / "data/coco128.yaml"'. device (str): CUDA device, e.g., '0' or '0,1,2,3' or 'cpu'. Defaults to an empty string (auto-select). half (bool): Use FP16 half-precision inference. This is a flag and defaults to False. test (bool): Test exports only. This is a flag and defaults to False. pt_only (bool): Test PyTorch only. This is a flag and defaults to False. hard_fail (bool | str): Throw an error on benchmark failure. Can be a boolean or a string representing a minimum metric floor, e.g., '0.29'. Defaults to False. Returns: argparse.Namespace: Parsed command-line arguments encapsulated in an argparse Namespace object. Notes: The function modifies the 'opt.data' by checking and validating the YAML path using 'check_yaml()'. The parsed arguments are printed for reference using 'print_args()'. """ parser = argparse.ArgumentParser() parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="weights path") parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="inference size (pixels)") parser.add_argument("--batch-size", type=int, default=1, help="batch size") parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path") parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu") parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference") parser.add_argument("--test", action="store_true", help="test exports only") parser.add_argument("--pt-only", action="store_true", help="test PyTorch only") parser.add_argument("--hard-fail", nargs="?", const=True, default=False, help="Exception on error or < min metric") opt = parser.parse_args() opt.data = check_yaml(opt.data) # check YAML print_args(vars(opt)) return opt def main(opt): """ Executes YOLOv5 benchmark tests or main training/inference routines based on the provided command-line arguments. Args: opt (argparse.Namespace): Parsed command-line arguments including options for weights, image size, batch size, data configuration, device, and other flags for inference settings. Returns: None: This function does not return any value. It leverages side-effects such as logging and running benchmarks. Example: ```python if __name__ == "__main__": opt = parse_opt() main(opt) ``` Notes: - For a complete list of supported export formats and their respective requirements, refer to the [Ultralytics YOLOv5 Export Formats](https://github.com/ultralytics/yolov5#export-formats). - Ensure that you have installed all necessary dependencies by following the installation instructions detailed in the [main repository](https://github.com/ultralytics/yolov5#installation). ```shell # Running benchmarks on default weights and image size $ python benchmarks.py --weights yolov5s.pt --img 640 ``` """ test(**vars(opt)) if opt.test else run(**vars(opt)) if __name__ == "__main__": opt = parse_opt() main(opt)