# Ultralytics YOLOv5 🚀, AGPL-3.0 license # Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI # Example usage: python train.py --data Argoverse.yaml # parent # ├── yolov5 # └── datasets # └── Argoverse ← downloads here (31.3 GB) # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: ../datasets/Argoverse # dataset root dir train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview # Classes names: 0: person 1: bicycle 2: car 3: motorcycle 4: bus 5: truck 6: traffic_light 7: stop_sign # Download script/URL (optional) --------------------------------------------------------------------------------------- download: | import json from tqdm import tqdm from utils.general import download, Path def argoverse2yolo(set): labels = {} a = json.load(open(set, "rb")) for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."): img_id = annot['image_id'] img_name = a['images'][img_id]['name'] img_label_name = f'{img_name[:-3]}txt' cls = annot['category_id'] # instance class id x_center, y_center, width, height = annot['bbox'] x_center = (x_center + width / 2) / 1920.0 # offset and scale y_center = (y_center + height / 2) / 1200.0 # offset and scale width /= 1920.0 # scale height /= 1200.0 # scale img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']] if not img_dir.exists(): img_dir.mkdir(parents=True, exist_ok=True) k = str(img_dir / img_label_name) if k not in labels: labels[k] = [] labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n") for k in labels: with open(k, "w") as f: f.writelines(labels[k]) # Download dir = Path(yaml['path']) # dataset root dir urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip'] download(urls, dir=dir, delete=False) # Convert annotations_dir = 'Argoverse-HD/annotations/' (dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images' for d in "train.json", "val.json": argoverse2yolo(dir / annotations_dir / d) # convert VisDrone annotations to YOLO labels