# Ultralytics YOLOv5 🚀, AGPL-3.0 license # ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University # Simplified class names from https://github.com/anishathalye/imagenet-simple-labels # Example usage: python classify/train.py --data imagenet # parent # ├── yolov5 # └── datasets # └── imagenet10 ← downloads here # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: ../datasets/imagenet10 # dataset root dir train: train # train images (relative to 'path') 1281167 images val: val # val images (relative to 'path') 50000 images test: # test images (optional) # Classes names: 0: tench 1: goldfish 2: great white shark 3: tiger shark 4: hammerhead shark 5: electric ray 6: stingray 7: cock 8: hen 9: ostrich # Download script/URL (optional) download: data/scripts/get_imagenet10.sh