{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "t6MPjfT5NrKQ" }, "source": [ "
\n", "\n", " \n", " \n", "\n", "\n", "
\n", " \"Run\n", " \"Open\n", " \"Open\n", "
\n", "\n", "This YOLOv5 🚀 notebook by Ultralytics presents simple train, validate and predict examples to help start your AI adventure.
See GitHub for community support or contact us for professional support.\n", "\n", "
" ] }, { "cell_type": "markdown", "metadata": { "id": "7mGmQbAO5pQb" }, "source": [ "# Setup\n", "\n", "Clone GitHub [repository](https://github.com/ultralytics/yolov5), install [dependencies](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) and check PyTorch and GPU." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "wbvMlHd_QwMG", "outputId": "171b23f0-71b9-4cbf-b666-6fa2ecef70c8" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Setup complete ✅ (2 CPUs, 12.7 GB RAM, 22.6/78.2 GB disk)\n" ] } ], "source": [ "!git clone https://github.com/ultralytics/yolov5 # clone\n", "%cd yolov5\n", "%pip install -qr requirements.txt comet_ml # install\n", "\n", "import torch\n", "\n", "import utils\n", "\n", "display = utils.notebook_init() # checks" ] }, { "cell_type": "markdown", "metadata": { "id": "4JnkELT0cIJg" }, "source": [ "# 1. Predict\n", "\n", "`segment/predict.py` runs YOLOv5 instance segmentation inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/predict`. Example inference sources are:\n", "\n", "```shell\n", "python segment/predict.py --source 0 # webcam\n", " img.jpg # image \n", " vid.mp4 # video\n", " screen # screenshot\n", " path/ # directory\n", " 'path/*.jpg' # glob\n", " 'https://youtu.be/LNwODJXcvt4' # YouTube\n", " 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream\n", "```" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "zR9ZbuQCH7FX", "outputId": "3f67f1c7-f15e-4fa5-d251-967c3b77eaad" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[34m\u001b[1msegment/predict: \u001b[0mweights=['yolov5s-seg.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/predict-seg, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1, retina_masks=False\n", "YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n", "\n", "Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt to yolov5s-seg.pt...\n", "100% 14.9M/14.9M [00:01<00:00, 12.0MB/s]\n", "\n", "Fusing layers... \n", "YOLOv5s-seg summary: 224 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n", "image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 18.2ms\n", "image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, 13.4ms\n", "Speed: 0.5ms pre-process, 15.8ms inference, 18.5ms NMS per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/predict-seg/exp\u001b[0m\n" ] } ], "source": [ "!python segment/predict.py --weights yolov5s-seg.pt --img 640 --conf 0.25 --source data/images\n", "# display.Image(filename='runs/predict-seg/exp/zidane.jpg', width=600)" ] }, { "cell_type": "markdown", "metadata": { "id": "hkAzDWJ7cWTr" }, "source": [ "        \n", "" ] }, { "cell_type": "markdown", "metadata": { "id": "0eq1SMWl6Sfn" }, "source": [ "# 2. Validate\n", "Validate a model's accuracy on the [COCO](https://cocodataset.org/#home) dataset's `val` or `test` splits. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "WQPtK1QYVaD_", "outputId": "9d751d8c-bee8-4339-cf30-9854ca530449" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloading https://github.com/ultralytics/assets/releases/download/v0.0.0/coco2017labels-segments.zip ...\n", "Downloading http://images.cocodataset.org/zips/val2017.zip ...\n", "######################################################################## 100.0%\n", "######################################################################## 100.0%\n" ] } ], "source": [ "# Download COCO val\n", "!bash data/scripts/get_coco.sh --val --segments # download (780M - 5000 images)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "X58w8JLpMnjH", "outputId": "a140d67a-02da-479e-9ddb-7d54bf9e407a" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[34m\u001b[1msegment/val: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5s-seg.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.6, max_det=300, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=False, project=runs/val-seg, name=exp, exist_ok=False, half=True, dnn=False\n", "YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n", "\n", "Fusing layers... \n", "YOLOv5s-seg summary: 224 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n", "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco/val2017... 4952 images, 48 backgrounds, 0 corrupt: 100% 5000/5000 [00:03<00:00, 1361.31it/s]\n", "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 157/157 [01:54<00:00, 1.37it/s]\n", " all 5000 36335 0.673 0.517 0.566 0.373 0.672 0.49 0.532 0.319\n", "Speed: 0.6ms pre-process, 4.4ms inference, 2.9ms NMS per image at shape (32, 3, 640, 640)\n", "Results saved to \u001b[1mruns/val-seg/exp\u001b[0m\n" ] } ], "source": [ "# Validate YOLOv5s-seg on COCO val\n", "!python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 --half" ] }, { "cell_type": "markdown", "metadata": { "id": "ZY2VXXXu74w5" }, "source": [ "# 3. Train\n", "\n", "

\n", "Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n", "

\n", "\n", "Train a YOLOv5s-seg model on the [COCO128](https://www.kaggle.com/datasets/ultralytics/coco128) dataset with `--data coco128-seg.yaml`, starting from pretrained `--weights yolov5s-seg.pt`, or from randomly initialized `--weights '' --cfg yolov5s-seg.yaml`.\n", "\n", "- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n", "automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n", "- **[Datasets](https://github.com/ultralytics/yolov5/tree/master/data)** available for autodownload include: [COCO](https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml), [COCO128](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml), [Argoverse](https://github.com/ultralytics/yolov5/blob/master/data/Argoverse.yaml), [VisDrone](https://github.com/ultralytics/yolov5/blob/master/data/VisDrone.yaml), [GlobalWheat](https://github.com/ultralytics/yolov5/blob/master/data/GlobalWheat2020.yaml), [xView](https://github.com/ultralytics/yolov5/blob/master/data/xView.yaml), [Objects365](https://github.com/ultralytics/yolov5/blob/master/data/Objects365.yaml), [SKU-110K](https://github.com/ultralytics/yolov5/blob/master/data/SKU-110K.yaml).\n", "- **Training Results** are saved to `runs/train-seg/` with incrementing run directories, i.e. `runs/train-seg/exp2`, `runs/train-seg/exp3` etc.\n", "

\n", "\n", "A **Mosaic Dataloader** is used for training which combines 4 images into 1 mosaic.\n", "\n", "## Train on Custom Data with Roboflow 🌟 NEW\n", "\n", "[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package.\n", "\n", "- Custom Training Example: [https://blog.roboflow.com/train-yolov5-instance-segmentation-custom-dataset/](https://blog.roboflow.com/train-yolov5-instance-segmentation-custom-dataset/?ref=ultralytics)\n", "- Custom Training Notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1JTz7kpmHsg-5qwVz2d2IH3AaenI1tv0N?usp=sharing)\n", "
\n", "\n", "

Label images lightning fast (including with model-assisted labeling)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "i3oKtE4g-aNn" }, "outputs": [], "source": [ "# @title Select YOLOv5 🚀 logger {run: 'auto'}\n", "logger = \"Comet\" # @param ['Comet', 'ClearML', 'TensorBoard']\n", "\n", "if logger == \"Comet\":\n", " %pip install -q comet_ml\n", " import comet_ml\n", "\n", " comet_ml.init()\n", "elif logger == \"ClearML\":\n", " %pip install -q clearml\n", " import clearml\n", "\n", " clearml.browser_login()\n", "elif logger == \"TensorBoard\":\n", " %load_ext tensorboard\n", " %tensorboard --logdir runs/train" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "1NcFxRcFdJ_O", "outputId": "3a3e0cf7-e79c-47a5-c8e7-2d26eeeab988" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[34m\u001b[1msegment/train: \u001b[0mweights=yolov5s-seg.pt, cfg=, data=coco128-seg.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train-seg, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, mask_ratio=4, no_overlap=False\n", "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n", "YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n", "\n", "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n", "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train-seg', view at http://localhost:6006/\n", "\n", "Dataset not found ⚠️, missing paths ['/content/datasets/coco128-seg/images/train2017']\n", "Downloading https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128-seg.zip to coco128-seg.zip...\n", "100% 6.79M/6.79M [00:01<00:00, 6.73MB/s]\n", "Dataset download success ✅ (1.9s), saved to \u001b[1m/content/datasets\u001b[0m\n", "\n", " from n params module arguments \n", " 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n", " 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n", " 2 -1 1 18816 models.common.C3 [64, 64, 1] \n", " 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] \n", " 4 -1 2 115712 models.common.C3 [128, 128, 2] \n", " 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] \n", " 6 -1 3 625152 models.common.C3 [256, 256, 3] \n", " 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] \n", " 8 -1 1 1182720 models.common.C3 [512, 512, 1] \n", " 9 -1 1 656896 models.common.SPPF [512, 512, 5] \n", " 10 -1 1 131584 models.common.Conv [512, 256, 1, 1] \n", " 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", " 12 [-1, 6] 1 0 models.common.Concat [1] \n", " 13 -1 1 361984 models.common.C3 [512, 256, 1, False] \n", " 14 -1 1 33024 models.common.Conv [256, 128, 1, 1] \n", " 15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", " 16 [-1, 4] 1 0 models.common.Concat [1] \n", " 17 -1 1 90880 models.common.C3 [256, 128, 1, False] \n", " 18 -1 1 147712 models.common.Conv [128, 128, 3, 2] \n", " 19 [-1, 14] 1 0 models.common.Concat [1] \n", " 20 -1 1 296448 models.common.C3 [256, 256, 1, False] \n", " 21 -1 1 590336 models.common.Conv [256, 256, 3, 2] \n", " 22 [-1, 10] 1 0 models.common.Concat [1] \n", " 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n", " 24 [17, 20, 23] 1 615133 models.yolo.Segment [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], 32, 128, [128, 256, 512]]\n", "Model summary: 225 layers, 7621277 parameters, 7621277 gradients, 26.6 GFLOPs\n", "\n", "Transferred 367/367 items from yolov5s-seg.pt\n", "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n", "\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 60 weight(decay=0.0), 63 weight(decay=0.0005), 63 bias\n", "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n", "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/datasets/coco128-seg/labels/train2017... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<00:00, 1389.59it/s]\n", "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128-seg/labels/train2017.cache\n", "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 238.86it/s]\n", "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco128-seg/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00 # 2. paste API key\n", "python train.py --img 640 --epochs 3 --data coco128.yaml --weights yolov5s.pt # 3. train\n", "```\n", "To learn more about all of the supported Comet features for this integration, check out the [Comet Tutorial](https://docs.ultralytics.com/yolov5/tutorials/comet_logging_integration). If you'd like to learn more about Comet, head over to our [documentation](https://www.comet.com/docs/v2/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab). Get started by trying out the Comet Colab Notebook:\n", "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1RG0WOQyxlDlo5Km8GogJpIEJlg_5lyYO?usp=sharing)\n", "\n", "\n", "\"Comet" ] }, { "cell_type": "markdown", "metadata": { "id": "Lay2WsTjNJzP" }, "source": [ "## ClearML Logging and Automation 🌟 NEW\n", "\n", "[ClearML](https://cutt.ly/yolov5-notebook-clearml) is completely integrated into YOLOv5 to track your experimentation, manage dataset versions and even remotely execute training runs. To enable ClearML (check cells above):\n", "\n", "- `pip install clearml`\n", "- run `clearml-init` to connect to a ClearML server (**deploy your own [open-source server](https://github.com/allegroai/clearml-server)**, or use our [free hosted server](https://cutt.ly/yolov5-notebook-clearml))\n", "\n", "You'll get all the great expected features from an experiment manager: live updates, model upload, experiment comparison etc. but ClearML also tracks uncommitted changes and installed packages for example. Thanks to that ClearML Tasks (which is what we call experiments) are also reproducible on different machines! With only 1 extra line, we can schedule a YOLOv5 training task on a queue to be executed by any number of ClearML Agents (workers).\n", "\n", "You can use ClearML Data to version your dataset and then pass it to YOLOv5 simply using its unique ID. This will help you keep track of your data without adding extra hassle. Explore the [ClearML Tutorial](https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration) for details!\n", "\n", "\n", "\"ClearML" ] }, { "cell_type": "markdown", "metadata": { "id": "-WPvRbS5Swl6" }, "source": [ "## Local Logging\n", "\n", "Training results are automatically logged with [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) loggers to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc.\n", "\n", "This directory contains train and val statistics, mosaics, labels, predictions and augmentated mosaics, as well as metrics and charts including precision-recall (PR) curves and confusion matrices. \n", "\n", "\"Local\n" ] }, { "cell_type": "markdown", "metadata": { "id": "Zelyeqbyt3GD" }, "source": [ "# Environments\n", "\n", "YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n", "\n", "- **Notebooks** with free GPU: \"Run \"Open \"Open\n", "- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/)\n", "- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/)\n", "- **Docker Image**. See [Docker Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/docker_image_quickstart_tutorial/) \"Docker\n" ] }, { "cell_type": "markdown", "metadata": { "id": "6Qu7Iesl0p54" }, "source": [ "# Status\n", "\n", "![YOLOv5 CI](https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg)\n", "\n", "If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "IEijrePND_2I" }, "source": [ "# Appendix\n", "\n", "Additional content below." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "GMusP4OAxFu6" }, "outputs": [], "source": [ "# YOLOv5 PyTorch HUB Inference (DetectionModels only)\n", "\n", "model = torch.hub.load(\n", " \"ultralytics/yolov5\", \"yolov5s-seg\", force_reload=True, trust_repo=True\n", ") # or yolov5n - yolov5x6 or custom\n", "im = \"https://ultralytics.com/images/zidane.jpg\" # file, Path, PIL.Image, OpenCV, nparray, list\n", "results = model(im) # inference\n", "results.print() # or .show(), .save(), .crop(), .pandas(), etc." ] } ], "metadata": { "accelerator": "GPU", "colab": { "name": "YOLOv5 Segmentation Tutorial", "provenance": [], "toc_visible": true }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }