# Ultralytics YOLOv5 🚀, AGPL-3.0 license """Logging utils.""" import json import os import warnings from pathlib import Path import pkg_resources as pkg import torch from utils.general import LOGGER, colorstr, cv2 from utils.loggers.clearml.clearml_utils import ClearmlLogger from utils.loggers.wandb.wandb_utils import WandbLogger from utils.plots import plot_images, plot_labels, plot_results from utils.torch_utils import de_parallel LOGGERS = ("csv", "tb", "wandb", "clearml", "comet") # *.csv, TensorBoard, Weights & Biases, ClearML RANK = int(os.getenv("RANK", -1)) try: from torch.utils.tensorboard import SummaryWriter except ImportError: def SummaryWriter(*args): """Fall back to SummaryWriter returning None if TensorBoard is not installed.""" return None # None = SummaryWriter(str) try: import wandb assert hasattr(wandb, "__version__") # verify package import not local dir if pkg.parse_version(wandb.__version__) >= pkg.parse_version("0.12.2") and RANK in {0, -1}: try: wandb_login_success = wandb.login(timeout=30) except wandb.errors.UsageError: # known non-TTY terminal issue wandb_login_success = False if not wandb_login_success: wandb = None except (ImportError, AssertionError): wandb = None try: import clearml assert hasattr(clearml, "__version__") # verify package import not local dir except (ImportError, AssertionError): clearml = None try: if RANK in {0, -1}: import comet_ml assert hasattr(comet_ml, "__version__") # verify package import not local dir from utils.loggers.comet import CometLogger else: comet_ml = None except (ImportError, AssertionError): comet_ml = None def _json_default(value): """ Format `value` for JSON serialization (e.g. unwrap tensors). Fall back to strings. """ if isinstance(value, torch.Tensor): try: value = value.item() except ValueError: # "only one element tensors can be converted to Python scalars" pass return value if isinstance(value, float) else str(value) class Loggers: """Initializes and manages various logging utilities for tracking YOLOv5 training and validation metrics.""" def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS): """Initializes loggers for YOLOv5 training and validation metrics, paths, and options.""" self.save_dir = save_dir self.weights = weights self.opt = opt self.hyp = hyp self.plots = not opt.noplots # plot results self.logger = logger # for printing results to console self.include = include self.keys = [ "train/box_loss", "train/obj_loss", "train/cls_loss", # train loss "metrics/precision", "metrics/recall", "metrics/mAP_0.5", "metrics/mAP_0.5:0.95", # metrics "val/box_loss", "val/obj_loss", "val/cls_loss", # val loss "x/lr0", "x/lr1", "x/lr2", ] # params self.best_keys = ["best/epoch", "best/precision", "best/recall", "best/mAP_0.5", "best/mAP_0.5:0.95"] for k in LOGGERS: setattr(self, k, None) # init empty logger dictionary self.csv = True # always log to csv self.ndjson_console = "ndjson_console" in self.include # log ndjson to console self.ndjson_file = "ndjson_file" in self.include # log ndjson to file # Messages if not comet_ml: prefix = colorstr("Comet: ") s = f"{prefix}run 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet" self.logger.info(s) # TensorBoard s = self.save_dir if "tb" in self.include and not self.opt.evolve: prefix = colorstr("TensorBoard: ") self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/") self.tb = SummaryWriter(str(s)) # W&B if wandb and "wandb" in self.include: self.opt.hyp = self.hyp # add hyperparameters self.wandb = WandbLogger(self.opt) else: self.wandb = None # ClearML if clearml and "clearml" in self.include: try: self.clearml = ClearmlLogger(self.opt, self.hyp) except Exception: self.clearml = None prefix = colorstr("ClearML: ") LOGGER.warning( f"{prefix}WARNING ⚠️ ClearML is installed but not configured, skipping ClearML logging." f" See https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration#readme" ) else: self.clearml = None # Comet if comet_ml and "comet" in self.include: if isinstance(self.opt.resume, str) and self.opt.resume.startswith("comet://"): run_id = self.opt.resume.split("/")[-1] self.comet_logger = CometLogger(self.opt, self.hyp, run_id=run_id) else: self.comet_logger = CometLogger(self.opt, self.hyp) else: self.comet_logger = None @property def remote_dataset(self): """Fetches dataset dictionary from remote logging services like ClearML, Weights & Biases, or Comet ML.""" data_dict = None if self.clearml: data_dict = self.clearml.data_dict if self.wandb: data_dict = self.wandb.data_dict if self.comet_logger: data_dict = self.comet_logger.data_dict return data_dict def on_train_start(self): """Initializes the training process for Comet ML logger if it's configured.""" if self.comet_logger: self.comet_logger.on_train_start() def on_pretrain_routine_start(self): """Invokes pre-training routine start hook for Comet ML logger if available.""" if self.comet_logger: self.comet_logger.on_pretrain_routine_start() def on_pretrain_routine_end(self, labels, names): """Callback that runs at the end of pre-training routine, logging label plots if enabled.""" if self.plots: plot_labels(labels, names, self.save_dir) paths = self.save_dir.glob("*labels*.jpg") # training labels if self.wandb: self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]}) if self.comet_logger: self.comet_logger.on_pretrain_routine_end(paths) if self.clearml: for path in paths: self.clearml.log_plot(title=path.stem, plot_path=path) def on_train_batch_end(self, model, ni, imgs, targets, paths, vals): """Logs training batch end events, plots images, and updates external loggers with batch-end data.""" log_dict = dict(zip(self.keys[:3], vals)) # Callback runs on train batch end # ni: number integrated batches (since train start) if self.plots: if ni < 3: f = self.save_dir / f"train_batch{ni}.jpg" # filename plot_images(imgs, targets, paths, f) if ni == 0 and self.tb and not self.opt.sync_bn: log_tensorboard_graph(self.tb, model, imgsz=(self.opt.imgsz, self.opt.imgsz)) if ni == 10 and (self.wandb or self.clearml): files = sorted(self.save_dir.glob("train*.jpg")) if self.wandb: self.wandb.log({"Mosaics": [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]}) if self.clearml: self.clearml.log_debug_samples(files, title="Mosaics") if self.comet_logger: self.comet_logger.on_train_batch_end(log_dict, step=ni) def on_train_epoch_end(self, epoch): """Callback that updates the current epoch in Weights & Biases at the end of a training epoch.""" if self.wandb: self.wandb.current_epoch = epoch + 1 if self.comet_logger: self.comet_logger.on_train_epoch_end(epoch) def on_val_start(self): """Callback that signals the start of a validation phase to the Comet logger.""" if self.comet_logger: self.comet_logger.on_val_start() def on_val_image_end(self, pred, predn, path, names, im): """Callback that logs a validation image and its predictions to WandB or ClearML.""" if self.wandb: self.wandb.val_one_image(pred, predn, path, names, im) if self.clearml: self.clearml.log_image_with_boxes(path, pred, names, im) def on_val_batch_end(self, batch_i, im, targets, paths, shapes, out): """Logs validation batch results to Comet ML during training at the end of each validation batch.""" if self.comet_logger: self.comet_logger.on_val_batch_end(batch_i, im, targets, paths, shapes, out) def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix): """Logs validation results to WandB or ClearML at the end of the validation process.""" if self.wandb or self.clearml: files = sorted(self.save_dir.glob("val*.jpg")) if self.wandb: self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]}) if self.clearml: self.clearml.log_debug_samples(files, title="Validation") if self.comet_logger: self.comet_logger.on_val_end(nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix) def on_fit_epoch_end(self, vals, epoch, best_fitness, fi): """Callback that logs metrics and saves them to CSV or NDJSON at the end of each fit (train+val) epoch.""" x = dict(zip(self.keys, vals)) if self.csv: file = self.save_dir / "results.csv" n = len(x) + 1 # number of cols s = "" if file.exists() else (("%20s," * n % tuple(["epoch"] + self.keys)).rstrip(",") + "\n") # add header with open(file, "a") as f: f.write(s + ("%20.5g," * n % tuple([epoch] + vals)).rstrip(",") + "\n") if self.ndjson_console or self.ndjson_file: json_data = json.dumps(dict(epoch=epoch, **x), default=_json_default) if self.ndjson_console: print(json_data) if self.ndjson_file: file = self.save_dir / "results.ndjson" with open(file, "a") as f: print(json_data, file=f) if self.tb: for k, v in x.items(): self.tb.add_scalar(k, v, epoch) elif self.clearml: # log to ClearML if TensorBoard not used self.clearml.log_scalars(x, epoch) if self.wandb: if best_fitness == fi: best_results = [epoch] + vals[3:7] for i, name in enumerate(self.best_keys): self.wandb.wandb_run.summary[name] = best_results[i] # log best results in the summary self.wandb.log(x) self.wandb.end_epoch() if self.clearml: self.clearml.current_epoch_logged_images = set() # reset epoch image limit self.clearml.current_epoch += 1 if self.comet_logger: self.comet_logger.on_fit_epoch_end(x, epoch=epoch) def on_model_save(self, last, epoch, final_epoch, best_fitness, fi): """Callback that handles model saving events, logging to Weights & Biases or ClearML if enabled.""" if (epoch + 1) % self.opt.save_period == 0 and not final_epoch and self.opt.save_period != -1: if self.wandb: self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi) if self.clearml: self.clearml.task.update_output_model( model_path=str(last), model_name="Latest Model", auto_delete_file=False ) if self.comet_logger: self.comet_logger.on_model_save(last, epoch, final_epoch, best_fitness, fi) def on_train_end(self, last, best, epoch, results): """Callback that runs at the end of training to save plots and log results.""" if self.plots: plot_results(file=self.save_dir / "results.csv") # save results.png files = ["results.png", "confusion_matrix.png", *(f"{x}_curve.png" for x in ("F1", "PR", "P", "R"))] files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}") if self.tb and not self.clearml: # These images are already captured by ClearML by now, we don't want doubles for f in files: self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats="HWC") if self.wandb: self.wandb.log(dict(zip(self.keys[3:10], results))) self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]}) # Calling wandb.log. TODO: Refactor this into WandbLogger.log_model if not self.opt.evolve: wandb.log_artifact( str(best if best.exists() else last), type="model", name=f"run_{self.wandb.wandb_run.id}_model", aliases=["latest", "best", "stripped"], ) self.wandb.finish_run() if self.clearml and not self.opt.evolve: self.clearml.log_summary(dict(zip(self.keys[3:10], results))) [self.clearml.log_plot(title=f.stem, plot_path=f) for f in files] self.clearml.log_model( str(best if best.exists() else last), "Best Model" if best.exists() else "Last Model", epoch ) if self.comet_logger: final_results = dict(zip(self.keys[3:10], results)) self.comet_logger.on_train_end(files, self.save_dir, last, best, epoch, final_results) def on_params_update(self, params: dict): """Updates experiment hyperparameters or configurations in WandB, Comet, or ClearML.""" if self.wandb: self.wandb.wandb_run.config.update(params, allow_val_change=True) if self.comet_logger: self.comet_logger.on_params_update(params) if self.clearml: self.clearml.task.connect(params) class GenericLogger: """ YOLOv5 General purpose logger for non-task specific logging Usage: from utils.loggers import GenericLogger; logger = GenericLogger(...). Arguments: opt: Run arguments console_logger: Console logger include: loggers to include """ def __init__(self, opt, console_logger, include=("tb", "wandb", "clearml")): """Initializes a generic logger with optional TensorBoard, W&B, and ClearML support.""" self.save_dir = Path(opt.save_dir) self.include = include self.console_logger = console_logger self.csv = self.save_dir / "results.csv" # CSV logger if "tb" in self.include: prefix = colorstr("TensorBoard: ") self.console_logger.info( f"{prefix}Start with 'tensorboard --logdir {self.save_dir.parent}', view at http://localhost:6006/" ) self.tb = SummaryWriter(str(self.save_dir)) if wandb and "wandb" in self.include: self.wandb = wandb.init( project=web_project_name(str(opt.project)), name=None if opt.name == "exp" else opt.name, config=opt ) else: self.wandb = None if clearml and "clearml" in self.include: try: # Hyp is not available in classification mode hyp = {} if "hyp" not in opt else opt.hyp self.clearml = ClearmlLogger(opt, hyp) except Exception: self.clearml = None prefix = colorstr("ClearML: ") LOGGER.warning( f"{prefix}WARNING ⚠️ ClearML is installed but not configured, skipping ClearML logging." f" See https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration" ) else: self.clearml = None def log_metrics(self, metrics, epoch): """Logs metrics to CSV, TensorBoard, W&B, and ClearML; `metrics` is a dict, `epoch` is an int.""" if self.csv: keys, vals = list(metrics.keys()), list(metrics.values()) n = len(metrics) + 1 # number of cols s = "" if self.csv.exists() else (("%23s," * n % tuple(["epoch"] + keys)).rstrip(",") + "\n") # header with open(self.csv, "a") as f: f.write(s + ("%23.5g," * n % tuple([epoch] + vals)).rstrip(",") + "\n") if self.tb: for k, v in metrics.items(): self.tb.add_scalar(k, v, epoch) if self.wandb: self.wandb.log(metrics, step=epoch) if self.clearml: self.clearml.log_scalars(metrics, epoch) def log_images(self, files, name="Images", epoch=0): """Logs images to all loggers with optional naming and epoch specification.""" files = [Path(f) for f in (files if isinstance(files, (tuple, list)) else [files])] # to Path files = [f for f in files if f.exists()] # filter by exists if self.tb: for f in files: self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats="HWC") if self.wandb: self.wandb.log({name: [wandb.Image(str(f), caption=f.name) for f in files]}, step=epoch) if self.clearml: if name == "Results": [self.clearml.log_plot(f.stem, f) for f in files] else: self.clearml.log_debug_samples(files, title=name) def log_graph(self, model, imgsz=(640, 640)): """Logs model graph to all configured loggers with specified input image size.""" if self.tb: log_tensorboard_graph(self.tb, model, imgsz) def log_model(self, model_path, epoch=0, metadata=None): """Logs the model to all configured loggers with optional epoch and metadata.""" if metadata is None: metadata = {} # Log model to all loggers if self.wandb: art = wandb.Artifact(name=f"run_{wandb.run.id}_model", type="model", metadata=metadata) art.add_file(str(model_path)) wandb.log_artifact(art) if self.clearml: self.clearml.log_model(model_path=model_path, model_name=model_path.stem) def update_params(self, params): """Updates logged parameters in WandB and/or ClearML if enabled.""" if self.wandb: wandb.run.config.update(params, allow_val_change=True) if self.clearml: self.clearml.task.connect(params) def log_tensorboard_graph(tb, model, imgsz=(640, 640)): """Logs the model graph to TensorBoard with specified image size and model.""" try: p = next(model.parameters()) # for device, type imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz # expand im = torch.zeros((1, 3, *imgsz)).to(p.device).type_as(p) # input image (WARNING: must be zeros, not empty) with warnings.catch_warnings(): warnings.simplefilter("ignore") # suppress jit trace warning tb.add_graph(torch.jit.trace(de_parallel(model), im, strict=False), []) except Exception as e: LOGGER.warning(f"WARNING ⚠️ TensorBoard graph visualization failure {e}") def web_project_name(project): """Converts a local project name to a standardized web project name with optional suffixes.""" if not project.startswith("runs/train"): return project suffix = "-Classify" if project.endswith("-cls") else "-Segment" if project.endswith("-seg") else "" return f"YOLOv5{suffix}"