# Ultralytics YOLOv5 🚀, AGPL-3.0 license # WARNING ⚠️ wandb is deprecated and will be removed in future release. # See supported integrations at https://github.com/ultralytics/yolov5#integrations import logging import os import sys from contextlib import contextmanager from pathlib import Path from utils.general import LOGGER, colorstr FILE = Path(__file__).resolve() ROOT = FILE.parents[3] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH RANK = int(os.getenv("RANK", -1)) DEPRECATION_WARNING = ( f"{colorstr('wandb')}: WARNING ⚠️ wandb is deprecated and will be removed in a future release. " f'See supported integrations at https://github.com/ultralytics/yolov5#integrations.' ) try: import wandb assert hasattr(wandb, "__version__") # verify package import not local dir LOGGER.warning(DEPRECATION_WARNING) except (ImportError, AssertionError): wandb = None class WandbLogger: """ Log training runs, datasets, models, and predictions to Weights & Biases. This logger sends information to W&B at wandb.ai. By default, this information includes hyperparameters, system configuration and metrics, model metrics, and basic data metrics and analyses. By providing additional command line arguments to train.py, datasets, models and predictions can also be logged. For more on how this logger is used, see the Weights & Biases documentation: https://docs.wandb.com/guides/integrations/yolov5 """ def __init__(self, opt, run_id=None, job_type="Training"): """ - Initialize WandbLogger instance - Upload dataset if opt.upload_dataset is True - Setup training processes if job_type is 'Training'. Arguments: opt (namespace) -- Commandline arguments for this run run_id (str) -- Run ID of W&B run to be resumed job_type (str) -- To set the job_type for this run """ # Pre-training routine -- self.job_type = job_type self.wandb, self.wandb_run = wandb, wandb.run if wandb else None self.val_artifact, self.train_artifact = None, None self.train_artifact_path, self.val_artifact_path = None, None self.result_artifact = None self.val_table, self.result_table = None, None self.max_imgs_to_log = 16 self.data_dict = None if self.wandb: self.wandb_run = wandb.run or wandb.init( config=opt, resume="allow", project="YOLOv5" if opt.project == "runs/train" else Path(opt.project).stem, entity=opt.entity, name=opt.name if opt.name != "exp" else None, job_type=job_type, id=run_id, allow_val_change=True, ) if self.wandb_run and self.job_type == "Training": if isinstance(opt.data, dict): # This means another dataset manager has already processed the dataset info (e.g. ClearML) # and they will have stored the already processed dict in opt.data self.data_dict = opt.data self.setup_training(opt) def setup_training(self, opt): """ Setup the necessary processes for training YOLO models: - Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX - Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded - Setup log_dict, initialize bbox_interval. Arguments: opt (namespace) -- commandline arguments for this run """ self.log_dict, self.current_epoch = {}, 0 self.bbox_interval = opt.bbox_interval if isinstance(opt.resume, str): model_dir, _ = self.download_model_artifact(opt) if model_dir: self.weights = Path(model_dir) / "last.pt" config = self.wandb_run.config opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp, opt.imgsz = ( str(self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs, config.hyp, config.imgsz, ) if opt.bbox_interval == -1: self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1 if opt.evolve or opt.noplots: self.bbox_interval = opt.bbox_interval = opt.epochs + 1 # disable bbox_interval def log_model(self, path, opt, epoch, fitness_score, best_model=False): """ Log the model checkpoint as W&B artifact. Arguments: path (Path) -- Path of directory containing the checkpoints opt (namespace) -- Command line arguments for this run epoch (int) -- Current epoch number fitness_score (float) -- fitness score for current epoch best_model (boolean) -- Boolean representing if the current checkpoint is the best yet. """ model_artifact = wandb.Artifact( f"run_{wandb.run.id}_model", type="model", metadata={ "original_url": str(path), "epochs_trained": epoch + 1, "save period": opt.save_period, "project": opt.project, "total_epochs": opt.epochs, "fitness_score": fitness_score, }, ) model_artifact.add_file(str(path / "last.pt"), name="last.pt") wandb.log_artifact( model_artifact, aliases=[ "latest", "last", f"epoch {str(self.current_epoch)}", "best" if best_model else "", ], ) LOGGER.info(f"Saving model artifact on epoch {epoch + 1}") def val_one_image(self, pred, predn, path, names, im): """Evaluates model prediction for a single image, returning metrics and visualizations.""" pass def log(self, log_dict): """ Save the metrics to the logging dictionary. Arguments: log_dict (Dict) -- metrics/media to be logged in current step """ if self.wandb_run: for key, value in log_dict.items(): self.log_dict[key] = value def end_epoch(self): """ Commit the log_dict, model artifacts and Tables to W&B and flush the log_dict. Arguments: best_result (boolean): Boolean representing if the result of this evaluation is best or not """ if self.wandb_run: with all_logging_disabled(): try: wandb.log(self.log_dict) except BaseException as e: LOGGER.info( f"An error occurred in wandb logger. The training will proceed without interruption. More info\n{e}" ) self.wandb_run.finish() self.wandb_run = None self.log_dict = {} def finish_run(self): """Log metrics if any and finish the current W&B run.""" if self.wandb_run: if self.log_dict: with all_logging_disabled(): wandb.log(self.log_dict) wandb.run.finish() LOGGER.warning(DEPRECATION_WARNING) @contextmanager def all_logging_disabled(highest_level=logging.CRITICAL): """Source - https://gist.github.com/simon-weber/7853144 A context manager that will prevent any logging messages triggered during the body from being processed. :param highest_level: the maximum logging level in use. This would only need to be changed if a custom level greater than CRITICAL is defined. """ previous_level = logging.root.manager.disable logging.disable(highest_level) try: yield finally: logging.disable(previous_level)