You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1110 lines
51 KiB
Python
1110 lines
51 KiB
Python
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
|
"""Common modules."""
|
|
|
|
import ast
|
|
import contextlib
|
|
import json
|
|
import math
|
|
import platform
|
|
import warnings
|
|
import zipfile
|
|
from collections import OrderedDict, namedtuple
|
|
from copy import copy
|
|
from pathlib import Path
|
|
from urllib.parse import urlparse
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import pandas as pd
|
|
import requests
|
|
import torch
|
|
import torch.nn as nn
|
|
from PIL import Image
|
|
from torch.cuda import amp
|
|
|
|
# Import 'ultralytics' package or install if missing
|
|
try:
|
|
import ultralytics
|
|
|
|
assert hasattr(ultralytics, "__version__") # verify package is not directory
|
|
except (ImportError, AssertionError):
|
|
import os
|
|
|
|
os.system("pip install -U ultralytics")
|
|
import ultralytics
|
|
|
|
from ultralytics.utils.plotting import Annotator, colors, save_one_box
|
|
|
|
from utils import TryExcept
|
|
from utils.dataloaders import exif_transpose, letterbox
|
|
from utils.general import (
|
|
LOGGER,
|
|
ROOT,
|
|
Profile,
|
|
check_requirements,
|
|
check_suffix,
|
|
check_version,
|
|
colorstr,
|
|
increment_path,
|
|
is_jupyter,
|
|
make_divisible,
|
|
non_max_suppression,
|
|
scale_boxes,
|
|
xywh2xyxy,
|
|
xyxy2xywh,
|
|
yaml_load,
|
|
)
|
|
from utils.torch_utils import copy_attr, smart_inference_mode
|
|
|
|
|
|
def autopad(k, p=None, d=1):
|
|
"""
|
|
Pads kernel to 'same' output shape, adjusting for optional dilation; returns padding size.
|
|
|
|
`k`: kernel, `p`: padding, `d`: dilation.
|
|
"""
|
|
if d > 1:
|
|
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
|
|
if p is None:
|
|
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
|
return p
|
|
|
|
|
|
class Conv(nn.Module):
|
|
"""Applies a convolution, batch normalization, and activation function to an input tensor in a neural network."""
|
|
|
|
default_act = nn.SiLU() # default activation
|
|
|
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
|
|
"""Initializes a standard convolution layer with optional batch normalization and activation."""
|
|
super().__init__()
|
|
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
|
|
self.bn = nn.BatchNorm2d(c2)
|
|
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
|
|
|
def forward(self, x):
|
|
"""Applies a convolution followed by batch normalization and an activation function to the input tensor `x`."""
|
|
return self.act(self.bn(self.conv(x)))
|
|
|
|
def forward_fuse(self, x):
|
|
"""Applies a fused convolution and activation function to the input tensor `x`."""
|
|
return self.act(self.conv(x))
|
|
|
|
|
|
class DWConv(Conv):
|
|
"""Implements a depth-wise convolution layer with optional activation for efficient spatial filtering."""
|
|
|
|
def __init__(self, c1, c2, k=1, s=1, d=1, act=True):
|
|
"""Initializes a depth-wise convolution layer with optional activation; args: input channels (c1), output
|
|
channels (c2), kernel size (k), stride (s), dilation (d), and activation flag (act).
|
|
"""
|
|
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
|
|
|
|
|
|
class DWConvTranspose2d(nn.ConvTranspose2d):
|
|
"""A depth-wise transpose convolutional layer for upsampling in neural networks, particularly in YOLOv5 models."""
|
|
|
|
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0):
|
|
"""Initializes a depth-wise transpose convolutional layer for YOLOv5; args: input channels (c1), output channels
|
|
(c2), kernel size (k), stride (s), input padding (p1), output padding (p2).
|
|
"""
|
|
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
|
|
|
|
|
|
class TransformerLayer(nn.Module):
|
|
"""Transformer layer with multihead attention and linear layers, optimized by removing LayerNorm."""
|
|
|
|
def __init__(self, c, num_heads):
|
|
"""
|
|
Initializes a transformer layer, sans LayerNorm for performance, with multihead attention and linear layers.
|
|
|
|
See as described in https://arxiv.org/abs/2010.11929.
|
|
"""
|
|
super().__init__()
|
|
self.q = nn.Linear(c, c, bias=False)
|
|
self.k = nn.Linear(c, c, bias=False)
|
|
self.v = nn.Linear(c, c, bias=False)
|
|
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
|
|
self.fc1 = nn.Linear(c, c, bias=False)
|
|
self.fc2 = nn.Linear(c, c, bias=False)
|
|
|
|
def forward(self, x):
|
|
"""Performs forward pass using MultiheadAttention and two linear transformations with residual connections."""
|
|
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
|
|
x = self.fc2(self.fc1(x)) + x
|
|
return x
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
"""A Transformer block for vision tasks with convolution, position embeddings, and Transformer layers."""
|
|
|
|
def __init__(self, c1, c2, num_heads, num_layers):
|
|
"""Initializes a Transformer block for vision tasks, adapting dimensions if necessary and stacking specified
|
|
layers.
|
|
"""
|
|
super().__init__()
|
|
self.conv = None
|
|
if c1 != c2:
|
|
self.conv = Conv(c1, c2)
|
|
self.linear = nn.Linear(c2, c2) # learnable position embedding
|
|
self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
|
|
self.c2 = c2
|
|
|
|
def forward(self, x):
|
|
"""Processes input through an optional convolution, followed by Transformer layers and position embeddings for
|
|
object detection.
|
|
"""
|
|
if self.conv is not None:
|
|
x = self.conv(x)
|
|
b, _, w, h = x.shape
|
|
p = x.flatten(2).permute(2, 0, 1)
|
|
return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
|
|
|
|
|
|
class Bottleneck(nn.Module):
|
|
"""A bottleneck layer with optional shortcut and group convolution for efficient feature extraction."""
|
|
|
|
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):
|
|
"""Initializes a standard bottleneck layer with optional shortcut and group convolution, supporting channel
|
|
expansion.
|
|
"""
|
|
super().__init__()
|
|
c_ = int(c2 * e) # hidden channels
|
|
self.cv1 = Conv(c1, c_, 1, 1)
|
|
self.cv2 = Conv(c_, c2, 3, 1, g=g)
|
|
self.add = shortcut and c1 == c2
|
|
|
|
def forward(self, x):
|
|
"""Processes input through two convolutions, optionally adds shortcut if channel dimensions match; input is a
|
|
tensor.
|
|
"""
|
|
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
|
|
|
|
|
class BottleneckCSP(nn.Module):
|
|
"""CSP bottleneck layer for feature extraction with cross-stage partial connections and optional shortcuts."""
|
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
|
"""Initializes CSP bottleneck with optional shortcuts; args: ch_in, ch_out, number of repeats, shortcut bool,
|
|
groups, expansion.
|
|
"""
|
|
super().__init__()
|
|
c_ = int(c2 * e) # hidden channels
|
|
self.cv1 = Conv(c1, c_, 1, 1)
|
|
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
|
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
|
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
|
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
|
self.act = nn.SiLU()
|
|
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
|
|
|
def forward(self, x):
|
|
"""Performs forward pass by applying layers, activation, and concatenation on input x, returning feature-
|
|
enhanced output.
|
|
"""
|
|
y1 = self.cv3(self.m(self.cv1(x)))
|
|
y2 = self.cv2(x)
|
|
return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
|
|
|
|
|
|
class CrossConv(nn.Module):
|
|
"""Implements a cross convolution layer with downsampling, expansion, and optional shortcut."""
|
|
|
|
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
|
|
"""
|
|
Initializes CrossConv with downsampling, expanding, and optionally shortcutting; `c1` input, `c2` output
|
|
channels.
|
|
|
|
Inputs are ch_in, ch_out, kernel, stride, groups, expansion, shortcut.
|
|
"""
|
|
super().__init__()
|
|
c_ = int(c2 * e) # hidden channels
|
|
self.cv1 = Conv(c1, c_, (1, k), (1, s))
|
|
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
|
|
self.add = shortcut and c1 == c2
|
|
|
|
def forward(self, x):
|
|
"""Performs feature sampling, expanding, and applies shortcut if channels match; expects `x` input tensor."""
|
|
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
|
|
|
|
|
class C3(nn.Module):
|
|
"""Implements a CSP Bottleneck module with three convolutions for enhanced feature extraction in neural networks."""
|
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
|
"""Initializes C3 module with options for channel count, bottleneck repetition, shortcut usage, group
|
|
convolutions, and expansion.
|
|
"""
|
|
super().__init__()
|
|
c_ = int(c2 * e) # hidden channels
|
|
self.cv1 = Conv(c1, c_, 1, 1)
|
|
self.cv2 = Conv(c1, c_, 1, 1)
|
|
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
|
|
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
|
|
|
def forward(self, x):
|
|
"""Performs forward propagation using concatenated outputs from two convolutions and a Bottleneck sequence."""
|
|
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
|
|
|
|
|
|
class C3x(C3):
|
|
"""Extends the C3 module with cross-convolutions for enhanced feature extraction in neural networks."""
|
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
|
"""Initializes C3x module with cross-convolutions, extending C3 with customizable channel dimensions, groups,
|
|
and expansion.
|
|
"""
|
|
super().__init__(c1, c2, n, shortcut, g, e)
|
|
c_ = int(c2 * e)
|
|
self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
|
|
|
|
|
|
class C3TR(C3):
|
|
"""C3 module with TransformerBlock for enhanced feature extraction in object detection models."""
|
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
|
"""Initializes C3 module with TransformerBlock for enhanced feature extraction, accepts channel sizes, shortcut
|
|
config, group, and expansion.
|
|
"""
|
|
super().__init__(c1, c2, n, shortcut, g, e)
|
|
c_ = int(c2 * e)
|
|
self.m = TransformerBlock(c_, c_, 4, n)
|
|
|
|
|
|
class C3SPP(C3):
|
|
"""Extends the C3 module with an SPP layer for enhanced spatial feature extraction and customizable channels."""
|
|
|
|
def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
|
|
"""Initializes a C3 module with SPP layer for advanced spatial feature extraction, given channel sizes, kernel
|
|
sizes, shortcut, group, and expansion ratio.
|
|
"""
|
|
super().__init__(c1, c2, n, shortcut, g, e)
|
|
c_ = int(c2 * e)
|
|
self.m = SPP(c_, c_, k)
|
|
|
|
|
|
class C3Ghost(C3):
|
|
"""Implements a C3 module with Ghost Bottlenecks for efficient feature extraction in YOLOv5."""
|
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
|
"""Initializes YOLOv5's C3 module with Ghost Bottlenecks for efficient feature extraction."""
|
|
super().__init__(c1, c2, n, shortcut, g, e)
|
|
c_ = int(c2 * e) # hidden channels
|
|
self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
|
|
|
|
|
|
class SPP(nn.Module):
|
|
"""Implements Spatial Pyramid Pooling (SPP) for feature extraction, ref: https://arxiv.org/abs/1406.4729."""
|
|
|
|
def __init__(self, c1, c2, k=(5, 9, 13)):
|
|
"""Initializes SPP layer with Spatial Pyramid Pooling, ref: https://arxiv.org/abs/1406.4729, args: c1 (input channels), c2 (output channels), k (kernel sizes)."""
|
|
super().__init__()
|
|
c_ = c1 // 2 # hidden channels
|
|
self.cv1 = Conv(c1, c_, 1, 1)
|
|
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
|
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
|
|
|
def forward(self, x):
|
|
"""Applies convolution and max pooling layers to the input tensor `x`, concatenates results, and returns output
|
|
tensor.
|
|
"""
|
|
x = self.cv1(x)
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore") # suppress torch 1.9.0 max_pool2d() warning
|
|
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
|
|
|
|
|
class SPPF(nn.Module):
|
|
"""Implements a fast Spatial Pyramid Pooling (SPPF) layer for efficient feature extraction in YOLOv5 models."""
|
|
|
|
def __init__(self, c1, c2, k=5):
|
|
"""
|
|
Initializes YOLOv5 SPPF layer with given channels and kernel size for YOLOv5 model, combining convolution and
|
|
max pooling.
|
|
|
|
Equivalent to SPP(k=(5, 9, 13)).
|
|
"""
|
|
super().__init__()
|
|
c_ = c1 // 2 # hidden channels
|
|
self.cv1 = Conv(c1, c_, 1, 1)
|
|
self.cv2 = Conv(c_ * 4, c2, 1, 1)
|
|
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
|
|
|
def forward(self, x):
|
|
"""Processes input through a series of convolutions and max pooling operations for feature extraction."""
|
|
x = self.cv1(x)
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore") # suppress torch 1.9.0 max_pool2d() warning
|
|
y1 = self.m(x)
|
|
y2 = self.m(y1)
|
|
return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
|
|
|
|
|
|
class Focus(nn.Module):
|
|
"""Focuses spatial information into channel space using slicing and convolution for efficient feature extraction."""
|
|
|
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
|
|
"""Initializes Focus module to concentrate width-height info into channel space with configurable convolution
|
|
parameters.
|
|
"""
|
|
super().__init__()
|
|
self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
|
|
# self.contract = Contract(gain=2)
|
|
|
|
def forward(self, x):
|
|
"""Processes input through Focus mechanism, reshaping (b,c,w,h) to (b,4c,w/2,h/2) then applies convolution."""
|
|
return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
|
|
# return self.conv(self.contract(x))
|
|
|
|
|
|
class GhostConv(nn.Module):
|
|
"""Implements Ghost Convolution for efficient feature extraction, see https://github.com/huawei-noah/ghostnet."""
|
|
|
|
def __init__(self, c1, c2, k=1, s=1, g=1, act=True):
|
|
"""Initializes GhostConv with in/out channels, kernel size, stride, groups, and activation; halves out channels
|
|
for efficiency.
|
|
"""
|
|
super().__init__()
|
|
c_ = c2 // 2 # hidden channels
|
|
self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
|
|
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
|
|
|
|
def forward(self, x):
|
|
"""Performs forward pass, concatenating outputs of two convolutions on input `x`: shape (B,C,H,W)."""
|
|
y = self.cv1(x)
|
|
return torch.cat((y, self.cv2(y)), 1)
|
|
|
|
|
|
class GhostBottleneck(nn.Module):
|
|
"""Efficient bottleneck layer using Ghost Convolutions, see https://github.com/huawei-noah/ghostnet."""
|
|
|
|
def __init__(self, c1, c2, k=3, s=1):
|
|
"""Initializes GhostBottleneck with ch_in `c1`, ch_out `c2`, kernel size `k`, stride `s`; see https://github.com/huawei-noah/ghostnet."""
|
|
super().__init__()
|
|
c_ = c2 // 2
|
|
self.conv = nn.Sequential(
|
|
GhostConv(c1, c_, 1, 1), # pw
|
|
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
|
GhostConv(c_, c2, 1, 1, act=False),
|
|
) # pw-linear
|
|
self.shortcut = (
|
|
nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
|
|
)
|
|
|
|
def forward(self, x):
|
|
"""Processes input through conv and shortcut layers, returning their summed output."""
|
|
return self.conv(x) + self.shortcut(x)
|
|
|
|
|
|
class Contract(nn.Module):
|
|
"""Contracts spatial dimensions into channel dimensions for efficient processing in neural networks."""
|
|
|
|
def __init__(self, gain=2):
|
|
"""Initializes a layer to contract spatial dimensions (width-height) into channels, e.g., input shape
|
|
(1,64,80,80) to (1,256,40,40).
|
|
"""
|
|
super().__init__()
|
|
self.gain = gain
|
|
|
|
def forward(self, x):
|
|
"""Processes input tensor to expand channel dimensions by contracting spatial dimensions, yielding output shape
|
|
`(b, c*s*s, h//s, w//s)`.
|
|
"""
|
|
b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
|
|
s = self.gain
|
|
x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
|
|
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
|
|
return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
|
|
|
|
|
|
class Expand(nn.Module):
|
|
"""Expands spatial dimensions by redistributing channels, e.g., from (1,64,80,80) to (1,16,160,160)."""
|
|
|
|
def __init__(self, gain=2):
|
|
"""
|
|
Initializes the Expand module to increase spatial dimensions by redistributing channels, with an optional gain
|
|
factor.
|
|
|
|
Example: x(1,64,80,80) to x(1,16,160,160).
|
|
"""
|
|
super().__init__()
|
|
self.gain = gain
|
|
|
|
def forward(self, x):
|
|
"""Processes input tensor x to expand spatial dimensions by redistributing channels, requiring C / gain^2 ==
|
|
0.
|
|
"""
|
|
b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
|
|
s = self.gain
|
|
x = x.view(b, s, s, c // s**2, h, w) # x(1,2,2,16,80,80)
|
|
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
|
|
return x.view(b, c // s**2, h * s, w * s) # x(1,16,160,160)
|
|
|
|
|
|
class Concat(nn.Module):
|
|
"""Concatenates tensors along a specified dimension for efficient tensor manipulation in neural networks."""
|
|
|
|
def __init__(self, dimension=1):
|
|
"""Initializes a Concat module to concatenate tensors along a specified dimension."""
|
|
super().__init__()
|
|
self.d = dimension
|
|
|
|
def forward(self, x):
|
|
"""Concatenates a list of tensors along a specified dimension; `x` is a list of tensors, `dimension` is an
|
|
int.
|
|
"""
|
|
return torch.cat(x, self.d)
|
|
|
|
|
|
class DetectMultiBackend(nn.Module):
|
|
"""YOLOv5 MultiBackend class for inference on various backends including PyTorch, ONNX, TensorRT, and more."""
|
|
|
|
def __init__(self, weights="yolov5s.pt", device=torch.device("cpu"), dnn=False, data=None, fp16=False, fuse=True):
|
|
"""Initializes DetectMultiBackend with support for various inference backends, including PyTorch and ONNX."""
|
|
# PyTorch: weights = *.pt
|
|
# TorchScript: *.torchscript
|
|
# ONNX Runtime: *.onnx
|
|
# ONNX OpenCV DNN: *.onnx --dnn
|
|
# OpenVINO: *_openvino_model
|
|
# CoreML: *.mlpackage
|
|
# TensorRT: *.engine
|
|
# TensorFlow SavedModel: *_saved_model
|
|
# TensorFlow GraphDef: *.pb
|
|
# TensorFlow Lite: *.tflite
|
|
# TensorFlow Edge TPU: *_edgetpu.tflite
|
|
# PaddlePaddle: *_paddle_model
|
|
from models.experimental import attempt_download, attempt_load # scoped to avoid circular import
|
|
|
|
super().__init__()
|
|
w = str(weights[0] if isinstance(weights, list) else weights)
|
|
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w)
|
|
fp16 &= pt or jit or onnx or engine or triton # FP16
|
|
nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
|
|
stride = 32 # default stride
|
|
cuda = torch.cuda.is_available() and device.type != "cpu" # use CUDA
|
|
if not (pt or triton):
|
|
w = attempt_download(w) # download if not local
|
|
|
|
if pt: # PyTorch
|
|
model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse)
|
|
stride = max(int(model.stride.max()), 32) # model stride
|
|
names = model.module.names if hasattr(model, "module") else model.names # get class names
|
|
model.half() if fp16 else model.float()
|
|
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
|
|
elif jit: # TorchScript
|
|
LOGGER.info(f"Loading {w} for TorchScript inference...")
|
|
extra_files = {"config.txt": ""} # model metadata
|
|
model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
|
|
model.half() if fp16 else model.float()
|
|
if extra_files["config.txt"]: # load metadata dict
|
|
d = json.loads(
|
|
extra_files["config.txt"],
|
|
object_hook=lambda d: {int(k) if k.isdigit() else k: v for k, v in d.items()},
|
|
)
|
|
stride, names = int(d["stride"]), d["names"]
|
|
elif dnn: # ONNX OpenCV DNN
|
|
LOGGER.info(f"Loading {w} for ONNX OpenCV DNN inference...")
|
|
check_requirements("opencv-python>=4.5.4")
|
|
net = cv2.dnn.readNetFromONNX(w)
|
|
elif onnx: # ONNX Runtime
|
|
LOGGER.info(f"Loading {w} for ONNX Runtime inference...")
|
|
check_requirements(("onnx", "onnxruntime-gpu" if cuda else "onnxruntime"))
|
|
import onnxruntime
|
|
|
|
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] if cuda else ["CPUExecutionProvider"]
|
|
session = onnxruntime.InferenceSession(w, providers=providers)
|
|
output_names = [x.name for x in session.get_outputs()]
|
|
meta = session.get_modelmeta().custom_metadata_map # metadata
|
|
if "stride" in meta:
|
|
stride, names = int(meta["stride"]), eval(meta["names"])
|
|
elif xml: # OpenVINO
|
|
LOGGER.info(f"Loading {w} for OpenVINO inference...")
|
|
check_requirements("openvino>=2023.0") # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
|
from openvino.runtime import Core, Layout, get_batch
|
|
|
|
core = Core()
|
|
if not Path(w).is_file(): # if not *.xml
|
|
w = next(Path(w).glob("*.xml")) # get *.xml file from *_openvino_model dir
|
|
ov_model = core.read_model(model=w, weights=Path(w).with_suffix(".bin"))
|
|
if ov_model.get_parameters()[0].get_layout().empty:
|
|
ov_model.get_parameters()[0].set_layout(Layout("NCHW"))
|
|
batch_dim = get_batch(ov_model)
|
|
if batch_dim.is_static:
|
|
batch_size = batch_dim.get_length()
|
|
ov_compiled_model = core.compile_model(ov_model, device_name="AUTO") # AUTO selects best available device
|
|
stride, names = self._load_metadata(Path(w).with_suffix(".yaml")) # load metadata
|
|
elif engine: # TensorRT
|
|
LOGGER.info(f"Loading {w} for TensorRT inference...")
|
|
import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
|
|
|
|
check_version(trt.__version__, "7.0.0", hard=True) # require tensorrt>=7.0.0
|
|
if device.type == "cpu":
|
|
device = torch.device("cuda:0")
|
|
Binding = namedtuple("Binding", ("name", "dtype", "shape", "data", "ptr"))
|
|
logger = trt.Logger(trt.Logger.INFO)
|
|
with open(w, "rb") as f, trt.Runtime(logger) as runtime:
|
|
model = runtime.deserialize_cuda_engine(f.read())
|
|
context = model.create_execution_context()
|
|
bindings = OrderedDict()
|
|
output_names = []
|
|
fp16 = False # default updated below
|
|
dynamic = False
|
|
is_trt10 = not hasattr(model, "num_bindings")
|
|
num = range(model.num_io_tensors) if is_trt10 else range(model.num_bindings)
|
|
for i in num:
|
|
if is_trt10:
|
|
name = model.get_tensor_name(i)
|
|
dtype = trt.nptype(model.get_tensor_dtype(name))
|
|
is_input = model.get_tensor_mode(name) == trt.TensorIOMode.INPUT
|
|
if is_input:
|
|
if -1 in tuple(model.get_tensor_shape(name)): # dynamic
|
|
dynamic = True
|
|
context.set_input_shape(name, tuple(model.get_profile_shape(name, 0)[2]))
|
|
if dtype == np.float16:
|
|
fp16 = True
|
|
else: # output
|
|
output_names.append(name)
|
|
shape = tuple(context.get_tensor_shape(name))
|
|
else:
|
|
name = model.get_binding_name(i)
|
|
dtype = trt.nptype(model.get_binding_dtype(i))
|
|
if model.binding_is_input(i):
|
|
if -1 in tuple(model.get_binding_shape(i)): # dynamic
|
|
dynamic = True
|
|
context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2]))
|
|
if dtype == np.float16:
|
|
fp16 = True
|
|
else: # output
|
|
output_names.append(name)
|
|
shape = tuple(context.get_binding_shape(i))
|
|
im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
|
|
bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
|
|
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
|
|
batch_size = bindings["images"].shape[0] # if dynamic, this is instead max batch size
|
|
elif coreml: # CoreML
|
|
LOGGER.info(f"Loading {w} for CoreML inference...")
|
|
import coremltools as ct
|
|
|
|
model = ct.models.MLModel(w)
|
|
elif saved_model: # TF SavedModel
|
|
LOGGER.info(f"Loading {w} for TensorFlow SavedModel inference...")
|
|
import tensorflow as tf
|
|
|
|
keras = False # assume TF1 saved_model
|
|
model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
|
|
elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
|
|
LOGGER.info(f"Loading {w} for TensorFlow GraphDef inference...")
|
|
import tensorflow as tf
|
|
|
|
def wrap_frozen_graph(gd, inputs, outputs):
|
|
"""Wraps a TensorFlow GraphDef for inference, returning a pruned function."""
|
|
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
|
|
ge = x.graph.as_graph_element
|
|
return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
|
|
|
|
def gd_outputs(gd):
|
|
"""Generates a sorted list of graph outputs excluding NoOp nodes and inputs, formatted as '<name>:0'."""
|
|
name_list, input_list = [], []
|
|
for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef
|
|
name_list.append(node.name)
|
|
input_list.extend(node.input)
|
|
return sorted(f"{x}:0" for x in list(set(name_list) - set(input_list)) if not x.startswith("NoOp"))
|
|
|
|
gd = tf.Graph().as_graph_def() # TF GraphDef
|
|
with open(w, "rb") as f:
|
|
gd.ParseFromString(f.read())
|
|
frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd))
|
|
elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
|
|
try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
|
|
from tflite_runtime.interpreter import Interpreter, load_delegate
|
|
except ImportError:
|
|
import tensorflow as tf
|
|
|
|
Interpreter, load_delegate = (
|
|
tf.lite.Interpreter,
|
|
tf.lite.experimental.load_delegate,
|
|
)
|
|
if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
|
|
LOGGER.info(f"Loading {w} for TensorFlow Lite Edge TPU inference...")
|
|
delegate = {"Linux": "libedgetpu.so.1", "Darwin": "libedgetpu.1.dylib", "Windows": "edgetpu.dll"}[
|
|
platform.system()
|
|
]
|
|
interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
|
|
else: # TFLite
|
|
LOGGER.info(f"Loading {w} for TensorFlow Lite inference...")
|
|
interpreter = Interpreter(model_path=w) # load TFLite model
|
|
interpreter.allocate_tensors() # allocate
|
|
input_details = interpreter.get_input_details() # inputs
|
|
output_details = interpreter.get_output_details() # outputs
|
|
# load metadata
|
|
with contextlib.suppress(zipfile.BadZipFile):
|
|
with zipfile.ZipFile(w, "r") as model:
|
|
meta_file = model.namelist()[0]
|
|
meta = ast.literal_eval(model.read(meta_file).decode("utf-8"))
|
|
stride, names = int(meta["stride"]), meta["names"]
|
|
elif tfjs: # TF.js
|
|
raise NotImplementedError("ERROR: YOLOv5 TF.js inference is not supported")
|
|
elif paddle: # PaddlePaddle
|
|
LOGGER.info(f"Loading {w} for PaddlePaddle inference...")
|
|
check_requirements("paddlepaddle-gpu" if cuda else "paddlepaddle")
|
|
import paddle.inference as pdi
|
|
|
|
if not Path(w).is_file(): # if not *.pdmodel
|
|
w = next(Path(w).rglob("*.pdmodel")) # get *.pdmodel file from *_paddle_model dir
|
|
weights = Path(w).with_suffix(".pdiparams")
|
|
config = pdi.Config(str(w), str(weights))
|
|
if cuda:
|
|
config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
|
|
predictor = pdi.create_predictor(config)
|
|
input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
|
|
output_names = predictor.get_output_names()
|
|
elif triton: # NVIDIA Triton Inference Server
|
|
LOGGER.info(f"Using {w} as Triton Inference Server...")
|
|
check_requirements("tritonclient[all]")
|
|
from utils.triton import TritonRemoteModel
|
|
|
|
model = TritonRemoteModel(url=w)
|
|
nhwc = model.runtime.startswith("tensorflow")
|
|
else:
|
|
raise NotImplementedError(f"ERROR: {w} is not a supported format")
|
|
|
|
# class names
|
|
if "names" not in locals():
|
|
names = yaml_load(data)["names"] if data else {i: f"class{i}" for i in range(999)}
|
|
if names[0] == "n01440764" and len(names) == 1000: # ImageNet
|
|
names = yaml_load(ROOT / "data/ImageNet.yaml")["names"] # human-readable names
|
|
|
|
self.__dict__.update(locals()) # assign all variables to self
|
|
|
|
def forward(self, im, augment=False, visualize=False):
|
|
"""Performs YOLOv5 inference on input images with options for augmentation and visualization."""
|
|
b, ch, h, w = im.shape # batch, channel, height, width
|
|
if self.fp16 and im.dtype != torch.float16:
|
|
im = im.half() # to FP16
|
|
if self.nhwc:
|
|
im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)
|
|
|
|
if self.pt: # PyTorch
|
|
y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
|
|
elif self.jit: # TorchScript
|
|
y = self.model(im)
|
|
elif self.dnn: # ONNX OpenCV DNN
|
|
im = im.cpu().numpy() # torch to numpy
|
|
self.net.setInput(im)
|
|
y = self.net.forward()
|
|
elif self.onnx: # ONNX Runtime
|
|
im = im.cpu().numpy() # torch to numpy
|
|
y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
|
|
elif self.xml: # OpenVINO
|
|
im = im.cpu().numpy() # FP32
|
|
y = list(self.ov_compiled_model(im).values())
|
|
elif self.engine: # TensorRT
|
|
if self.dynamic and im.shape != self.bindings["images"].shape:
|
|
i = self.model.get_binding_index("images")
|
|
self.context.set_binding_shape(i, im.shape) # reshape if dynamic
|
|
self.bindings["images"] = self.bindings["images"]._replace(shape=im.shape)
|
|
for name in self.output_names:
|
|
i = self.model.get_binding_index(name)
|
|
self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
|
|
s = self.bindings["images"].shape
|
|
assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
|
|
self.binding_addrs["images"] = int(im.data_ptr())
|
|
self.context.execute_v2(list(self.binding_addrs.values()))
|
|
y = [self.bindings[x].data for x in sorted(self.output_names)]
|
|
elif self.coreml: # CoreML
|
|
im = im.cpu().numpy()
|
|
im = Image.fromarray((im[0] * 255).astype("uint8"))
|
|
# im = im.resize((192, 320), Image.BILINEAR)
|
|
y = self.model.predict({"image": im}) # coordinates are xywh normalized
|
|
if "confidence" in y:
|
|
box = xywh2xyxy(y["coordinates"] * [[w, h, w, h]]) # xyxy pixels
|
|
conf, cls = y["confidence"].max(1), y["confidence"].argmax(1).astype(np.float)
|
|
y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
|
|
else:
|
|
y = list(reversed(y.values())) # reversed for segmentation models (pred, proto)
|
|
elif self.paddle: # PaddlePaddle
|
|
im = im.cpu().numpy().astype(np.float32)
|
|
self.input_handle.copy_from_cpu(im)
|
|
self.predictor.run()
|
|
y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
|
|
elif self.triton: # NVIDIA Triton Inference Server
|
|
y = self.model(im)
|
|
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
|
|
im = im.cpu().numpy()
|
|
if self.saved_model: # SavedModel
|
|
y = self.model(im, training=False) if self.keras else self.model(im)
|
|
elif self.pb: # GraphDef
|
|
y = self.frozen_func(x=self.tf.constant(im))
|
|
else: # Lite or Edge TPU
|
|
input = self.input_details[0]
|
|
int8 = input["dtype"] == np.uint8 # is TFLite quantized uint8 model
|
|
if int8:
|
|
scale, zero_point = input["quantization"]
|
|
im = (im / scale + zero_point).astype(np.uint8) # de-scale
|
|
self.interpreter.set_tensor(input["index"], im)
|
|
self.interpreter.invoke()
|
|
y = []
|
|
for output in self.output_details:
|
|
x = self.interpreter.get_tensor(output["index"])
|
|
if int8:
|
|
scale, zero_point = output["quantization"]
|
|
x = (x.astype(np.float32) - zero_point) * scale # re-scale
|
|
y.append(x)
|
|
y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
|
|
y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels
|
|
|
|
if isinstance(y, (list, tuple)):
|
|
return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
|
|
else:
|
|
return self.from_numpy(y)
|
|
|
|
def from_numpy(self, x):
|
|
"""Converts a NumPy array to a torch tensor, maintaining device compatibility."""
|
|
return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x
|
|
|
|
def warmup(self, imgsz=(1, 3, 640, 640)):
|
|
"""Performs a single inference warmup to initialize model weights, accepting an `imgsz` tuple for image size."""
|
|
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton
|
|
if any(warmup_types) and (self.device.type != "cpu" or self.triton):
|
|
im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
|
|
for _ in range(2 if self.jit else 1): #
|
|
self.forward(im) # warmup
|
|
|
|
@staticmethod
|
|
def _model_type(p="path/to/model.pt"):
|
|
"""
|
|
Determines model type from file path or URL, supporting various export formats.
|
|
|
|
Example: path='path/to/model.onnx' -> type=onnx
|
|
"""
|
|
# types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]
|
|
from export import export_formats
|
|
from utils.downloads import is_url
|
|
|
|
sf = list(export_formats().Suffix) # export suffixes
|
|
if not is_url(p, check=False):
|
|
check_suffix(p, sf) # checks
|
|
url = urlparse(p) # if url may be Triton inference server
|
|
types = [s in Path(p).name for s in sf]
|
|
types[8] &= not types[9] # tflite &= not edgetpu
|
|
triton = not any(types) and all([any(s in url.scheme for s in ["http", "grpc"]), url.netloc])
|
|
return types + [triton]
|
|
|
|
@staticmethod
|
|
def _load_metadata(f=Path("path/to/meta.yaml")):
|
|
"""Loads metadata from a YAML file, returning strides and names if the file exists, otherwise `None`."""
|
|
if f.exists():
|
|
d = yaml_load(f)
|
|
return d["stride"], d["names"] # assign stride, names
|
|
return None, None
|
|
|
|
|
|
class AutoShape(nn.Module):
|
|
"""AutoShape class for robust YOLOv5 inference with preprocessing, NMS, and support for various input formats."""
|
|
|
|
conf = 0.25 # NMS confidence threshold
|
|
iou = 0.45 # NMS IoU threshold
|
|
agnostic = False # NMS class-agnostic
|
|
multi_label = False # NMS multiple labels per box
|
|
classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
|
|
max_det = 1000 # maximum number of detections per image
|
|
amp = False # Automatic Mixed Precision (AMP) inference
|
|
|
|
def __init__(self, model, verbose=True):
|
|
"""Initializes YOLOv5 model for inference, setting up attributes and preparing model for evaluation."""
|
|
super().__init__()
|
|
if verbose:
|
|
LOGGER.info("Adding AutoShape... ")
|
|
copy_attr(self, model, include=("yaml", "nc", "hyp", "names", "stride", "abc"), exclude=()) # copy attributes
|
|
self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance
|
|
self.pt = not self.dmb or model.pt # PyTorch model
|
|
self.model = model.eval()
|
|
if self.pt:
|
|
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
|
|
m.inplace = False # Detect.inplace=False for safe multithread inference
|
|
m.export = True # do not output loss values
|
|
|
|
def _apply(self, fn):
|
|
"""
|
|
Applies to(), cpu(), cuda(), half() etc.
|
|
|
|
to model tensors excluding parameters or registered buffers.
|
|
"""
|
|
self = super()._apply(fn)
|
|
if self.pt:
|
|
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
|
|
m.stride = fn(m.stride)
|
|
m.grid = list(map(fn, m.grid))
|
|
if isinstance(m.anchor_grid, list):
|
|
m.anchor_grid = list(map(fn, m.anchor_grid))
|
|
return self
|
|
|
|
@smart_inference_mode()
|
|
def forward(self, ims, size=640, augment=False, profile=False):
|
|
"""
|
|
Performs inference on inputs with optional augment & profiling.
|
|
|
|
Supports various formats including file, URI, OpenCV, PIL, numpy, torch.
|
|
"""
|
|
# For size(height=640, width=1280), RGB images example inputs are:
|
|
# file: ims = 'data/images/zidane.jpg' # str or PosixPath
|
|
# URI: = 'https://ultralytics.com/images/zidane.jpg'
|
|
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
|
|
# PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
|
|
# numpy: = np.zeros((640,1280,3)) # HWC
|
|
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
|
|
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
|
|
|
dt = (Profile(), Profile(), Profile())
|
|
with dt[0]:
|
|
if isinstance(size, int): # expand
|
|
size = (size, size)
|
|
p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) # param
|
|
autocast = self.amp and (p.device.type != "cpu") # Automatic Mixed Precision (AMP) inference
|
|
if isinstance(ims, torch.Tensor): # torch
|
|
with amp.autocast(autocast):
|
|
return self.model(ims.to(p.device).type_as(p), augment=augment) # inference
|
|
|
|
# Pre-process
|
|
n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims]) # number, list of images
|
|
shape0, shape1, files = [], [], [] # image and inference shapes, filenames
|
|
for i, im in enumerate(ims):
|
|
f = f"image{i}" # filename
|
|
if isinstance(im, (str, Path)): # filename or uri
|
|
im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith("http") else im), im
|
|
im = np.asarray(exif_transpose(im))
|
|
elif isinstance(im, Image.Image): # PIL Image
|
|
im, f = np.asarray(exif_transpose(im)), getattr(im, "filename", f) or f
|
|
files.append(Path(f).with_suffix(".jpg").name)
|
|
if im.shape[0] < 5: # image in CHW
|
|
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
|
im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) # enforce 3ch input
|
|
s = im.shape[:2] # HWC
|
|
shape0.append(s) # image shape
|
|
g = max(size) / max(s) # gain
|
|
shape1.append([int(y * g) for y in s])
|
|
ims[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
|
|
shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] # inf shape
|
|
x = [letterbox(im, shape1, auto=False)[0] for im in ims] # pad
|
|
x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
|
|
x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
|
|
|
|
with amp.autocast(autocast):
|
|
# Inference
|
|
with dt[1]:
|
|
y = self.model(x, augment=augment) # forward
|
|
|
|
# Post-process
|
|
with dt[2]:
|
|
y = non_max_suppression(
|
|
y if self.dmb else y[0],
|
|
self.conf,
|
|
self.iou,
|
|
self.classes,
|
|
self.agnostic,
|
|
self.multi_label,
|
|
max_det=self.max_det,
|
|
) # NMS
|
|
for i in range(n):
|
|
scale_boxes(shape1, y[i][:, :4], shape0[i])
|
|
|
|
return Detections(ims, y, files, dt, self.names, x.shape)
|
|
|
|
|
|
class Detections:
|
|
"""Manages YOLOv5 detection results with methods for visualization, saving, cropping, and exporting detections."""
|
|
|
|
def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):
|
|
"""Initializes the YOLOv5 Detections class with image info, predictions, filenames, timing and normalization."""
|
|
super().__init__()
|
|
d = pred[0].device # device
|
|
gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims] # normalizations
|
|
self.ims = ims # list of images as numpy arrays
|
|
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
|
self.names = names # class names
|
|
self.files = files # image filenames
|
|
self.times = times # profiling times
|
|
self.xyxy = pred # xyxy pixels
|
|
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
|
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
|
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
|
self.n = len(self.pred) # number of images (batch size)
|
|
self.t = tuple(x.t / self.n * 1e3 for x in times) # timestamps (ms)
|
|
self.s = tuple(shape) # inference BCHW shape
|
|
|
|
def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path("")):
|
|
"""Executes model predictions, displaying and/or saving outputs with optional crops and labels."""
|
|
s, crops = "", []
|
|
for i, (im, pred) in enumerate(zip(self.ims, self.pred)):
|
|
s += f"\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} " # string
|
|
if pred.shape[0]:
|
|
for c in pred[:, -1].unique():
|
|
n = (pred[:, -1] == c).sum() # detections per class
|
|
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
|
|
s = s.rstrip(", ")
|
|
if show or save or render or crop:
|
|
annotator = Annotator(im, example=str(self.names))
|
|
for *box, conf, cls in reversed(pred): # xyxy, confidence, class
|
|
label = f"{self.names[int(cls)]} {conf:.2f}"
|
|
if crop:
|
|
file = save_dir / "crops" / self.names[int(cls)] / self.files[i] if save else None
|
|
crops.append(
|
|
{
|
|
"box": box,
|
|
"conf": conf,
|
|
"cls": cls,
|
|
"label": label,
|
|
"im": save_one_box(box, im, file=file, save=save),
|
|
}
|
|
)
|
|
else: # all others
|
|
annotator.box_label(box, label if labels else "", color=colors(cls))
|
|
im = annotator.im
|
|
else:
|
|
s += "(no detections)"
|
|
|
|
im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
|
|
if show:
|
|
if is_jupyter():
|
|
from IPython.display import display
|
|
|
|
display(im)
|
|
else:
|
|
im.show(self.files[i])
|
|
if save:
|
|
f = self.files[i]
|
|
im.save(save_dir / f) # save
|
|
if i == self.n - 1:
|
|
LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
|
|
if render:
|
|
self.ims[i] = np.asarray(im)
|
|
if pprint:
|
|
s = s.lstrip("\n")
|
|
return f"{s}\nSpeed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {self.s}" % self.t
|
|
if crop:
|
|
if save:
|
|
LOGGER.info(f"Saved results to {save_dir}\n")
|
|
return crops
|
|
|
|
@TryExcept("Showing images is not supported in this environment")
|
|
def show(self, labels=True):
|
|
"""
|
|
Displays detection results with optional labels.
|
|
|
|
Usage: show(labels=True)
|
|
"""
|
|
self._run(show=True, labels=labels) # show results
|
|
|
|
def save(self, labels=True, save_dir="runs/detect/exp", exist_ok=False):
|
|
"""
|
|
Saves detection results with optional labels to a specified directory.
|
|
|
|
Usage: save(labels=True, save_dir='runs/detect/exp', exist_ok=False)
|
|
"""
|
|
save_dir = increment_path(save_dir, exist_ok, mkdir=True) # increment save_dir
|
|
self._run(save=True, labels=labels, save_dir=save_dir) # save results
|
|
|
|
def crop(self, save=True, save_dir="runs/detect/exp", exist_ok=False):
|
|
"""
|
|
Crops detection results, optionally saves them to a directory.
|
|
|
|
Args: save (bool), save_dir (str), exist_ok (bool).
|
|
"""
|
|
save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None
|
|
return self._run(crop=True, save=save, save_dir=save_dir) # crop results
|
|
|
|
def render(self, labels=True):
|
|
"""Renders detection results with optional labels on images; args: labels (bool) indicating label inclusion."""
|
|
self._run(render=True, labels=labels) # render results
|
|
return self.ims
|
|
|
|
def pandas(self):
|
|
"""
|
|
Returns detections as pandas DataFrames for various box formats (xyxy, xyxyn, xywh, xywhn).
|
|
|
|
Example: print(results.pandas().xyxy[0]).
|
|
"""
|
|
new = copy(self) # return copy
|
|
ca = "xmin", "ymin", "xmax", "ymax", "confidence", "class", "name" # xyxy columns
|
|
cb = "xcenter", "ycenter", "width", "height", "confidence", "class", "name" # xywh columns
|
|
for k, c in zip(["xyxy", "xyxyn", "xywh", "xywhn"], [ca, ca, cb, cb]):
|
|
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
|
|
setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
|
|
return new
|
|
|
|
def tolist(self):
|
|
"""
|
|
Converts a Detections object into a list of individual detection results for iteration.
|
|
|
|
Example: for result in results.tolist():
|
|
"""
|
|
r = range(self.n) # iterable
|
|
return [
|
|
Detections(
|
|
[self.ims[i]],
|
|
[self.pred[i]],
|
|
[self.files[i]],
|
|
self.times,
|
|
self.names,
|
|
self.s,
|
|
)
|
|
for i in r
|
|
]
|
|
|
|
def print(self):
|
|
"""Logs the string representation of the current object's state via the LOGGER."""
|
|
LOGGER.info(self.__str__())
|
|
|
|
def __len__(self):
|
|
"""Returns the number of results stored, overrides the default len(results)."""
|
|
return self.n
|
|
|
|
def __str__(self):
|
|
"""Returns a string representation of the model's results, suitable for printing, overrides default
|
|
print(results).
|
|
"""
|
|
return self._run(pprint=True) # print results
|
|
|
|
def __repr__(self):
|
|
"""Returns a string representation of the YOLOv5 object, including its class and formatted results."""
|
|
return f"YOLOv5 {self.__class__} instance\n" + self.__str__()
|
|
|
|
|
|
class Proto(nn.Module):
|
|
"""YOLOv5 mask Proto module for segmentation models, performing convolutions and upsampling on input tensors."""
|
|
|
|
def __init__(self, c1, c_=256, c2=32):
|
|
"""Initializes YOLOv5 Proto module for segmentation with input, proto, and mask channels configuration."""
|
|
super().__init__()
|
|
self.cv1 = Conv(c1, c_, k=3)
|
|
self.upsample = nn.Upsample(scale_factor=2, mode="nearest")
|
|
self.cv2 = Conv(c_, c_, k=3)
|
|
self.cv3 = Conv(c_, c2)
|
|
|
|
def forward(self, x):
|
|
"""Performs a forward pass using convolutional layers and upsampling on input tensor `x`."""
|
|
return self.cv3(self.cv2(self.upsample(self.cv1(x))))
|
|
|
|
|
|
class Classify(nn.Module):
|
|
"""YOLOv5 classification head with convolution, pooling, and dropout layers for channel transformation."""
|
|
|
|
def __init__(
|
|
self, c1, c2, k=1, s=1, p=None, g=1, dropout_p=0.0
|
|
): # ch_in, ch_out, kernel, stride, padding, groups, dropout probability
|
|
"""Initializes YOLOv5 classification head with convolution, pooling, and dropout layers for input to output
|
|
channel transformation.
|
|
"""
|
|
super().__init__()
|
|
c_ = 1280 # efficientnet_b0 size
|
|
self.conv = Conv(c1, c_, k, s, autopad(k, p), g)
|
|
self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1)
|
|
self.drop = nn.Dropout(p=dropout_p, inplace=True)
|
|
self.linear = nn.Linear(c_, c2) # to x(b,c2)
|
|
|
|
def forward(self, x):
|
|
"""Processes input through conv, pool, drop, and linear layers; supports list concatenation input."""
|
|
if isinstance(x, list):
|
|
x = torch.cat(x, 1)
|
|
return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
|