You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
127 lines
6.8 KiB
Python
127 lines
6.8 KiB
Python
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
|
|
|
import argparse
|
|
import json
|
|
import logging
|
|
import os
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
import comet_ml
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
FILE = Path(__file__).resolve()
|
|
ROOT = FILE.parents[3] # YOLOv5 root directory
|
|
if str(ROOT) not in sys.path:
|
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
|
|
|
from train import train
|
|
from utils.callbacks import Callbacks
|
|
from utils.general import increment_path
|
|
from utils.torch_utils import select_device
|
|
|
|
# Project Configuration
|
|
config = comet_ml.config.get_config()
|
|
COMET_PROJECT_NAME = config.get_string(os.getenv("COMET_PROJECT_NAME"), "comet.project_name", default="yolov5")
|
|
|
|
|
|
def get_args(known=False):
|
|
"""Parses command-line arguments for YOLOv5 training, supporting configuration of weights, data paths,
|
|
hyperparameters, and more.
|
|
"""
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="initial weights path")
|
|
parser.add_argument("--cfg", type=str, default="", help="model.yaml path")
|
|
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
|
|
parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch-low.yaml", help="hyperparameters path")
|
|
parser.add_argument("--epochs", type=int, default=300, help="total training epochs")
|
|
parser.add_argument("--batch-size", type=int, default=16, help="total batch size for all GPUs, -1 for autobatch")
|
|
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="train, val image size (pixels)")
|
|
parser.add_argument("--rect", action="store_true", help="rectangular training")
|
|
parser.add_argument("--resume", nargs="?", const=True, default=False, help="resume most recent training")
|
|
parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")
|
|
parser.add_argument("--noval", action="store_true", help="only validate final epoch")
|
|
parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor")
|
|
parser.add_argument("--noplots", action="store_true", help="save no plot files")
|
|
parser.add_argument("--evolve", type=int, nargs="?", const=300, help="evolve hyperparameters for x generations")
|
|
parser.add_argument("--bucket", type=str, default="", help="gsutil bucket")
|
|
parser.add_argument("--cache", type=str, nargs="?", const="ram", help='--cache images in "ram" (default) or "disk"')
|
|
parser.add_argument("--image-weights", action="store_true", help="use weighted image selection for training")
|
|
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
|
|
parser.add_argument("--multi-scale", action="store_true", help="vary img-size +/- 50%%")
|
|
parser.add_argument("--single-cls", action="store_true", help="train multi-class data as single-class")
|
|
parser.add_argument("--optimizer", type=str, choices=["SGD", "Adam", "AdamW"], default="SGD", help="optimizer")
|
|
parser.add_argument("--sync-bn", action="store_true", help="use SyncBatchNorm, only available in DDP mode")
|
|
parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
|
|
parser.add_argument("--project", default=ROOT / "runs/train", help="save to project/name")
|
|
parser.add_argument("--name", default="exp", help="save to project/name")
|
|
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
|
|
parser.add_argument("--quad", action="store_true", help="quad dataloader")
|
|
parser.add_argument("--cos-lr", action="store_true", help="cosine LR scheduler")
|
|
parser.add_argument("--label-smoothing", type=float, default=0.0, help="Label smoothing epsilon")
|
|
parser.add_argument("--patience", type=int, default=100, help="EarlyStopping patience (epochs without improvement)")
|
|
parser.add_argument("--freeze", nargs="+", type=int, default=[0], help="Freeze layers: backbone=10, first3=0 1 2")
|
|
parser.add_argument("--save-period", type=int, default=-1, help="Save checkpoint every x epochs (disabled if < 1)")
|
|
parser.add_argument("--seed", type=int, default=0, help="Global training seed")
|
|
parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify")
|
|
|
|
# Weights & Biases arguments
|
|
parser.add_argument("--entity", default=None, help="W&B: Entity")
|
|
parser.add_argument("--upload_dataset", nargs="?", const=True, default=False, help='W&B: Upload data, "val" option')
|
|
parser.add_argument("--bbox_interval", type=int, default=-1, help="W&B: Set bounding-box image logging interval")
|
|
parser.add_argument("--artifact_alias", type=str, default="latest", help="W&B: Version of dataset artifact to use")
|
|
|
|
# Comet Arguments
|
|
parser.add_argument("--comet_optimizer_config", type=str, help="Comet: Path to a Comet Optimizer Config File.")
|
|
parser.add_argument("--comet_optimizer_id", type=str, help="Comet: ID of the Comet Optimizer sweep.")
|
|
parser.add_argument("--comet_optimizer_objective", type=str, help="Comet: Set to 'minimize' or 'maximize'.")
|
|
parser.add_argument("--comet_optimizer_metric", type=str, help="Comet: Metric to Optimize.")
|
|
parser.add_argument(
|
|
"--comet_optimizer_workers",
|
|
type=int,
|
|
default=1,
|
|
help="Comet: Number of Parallel Workers to use with the Comet Optimizer.",
|
|
)
|
|
|
|
return parser.parse_known_args()[0] if known else parser.parse_args()
|
|
|
|
|
|
def run(parameters, opt):
|
|
"""Executes YOLOv5 training with given hyperparameters and options, setting up device and training directories."""
|
|
hyp_dict = {k: v for k, v in parameters.items() if k not in ["epochs", "batch_size"]}
|
|
|
|
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
|
|
opt.batch_size = parameters.get("batch_size")
|
|
opt.epochs = parameters.get("epochs")
|
|
|
|
device = select_device(opt.device, batch_size=opt.batch_size)
|
|
train(hyp_dict, opt, device, callbacks=Callbacks())
|
|
|
|
|
|
if __name__ == "__main__":
|
|
opt = get_args(known=True)
|
|
|
|
opt.weights = str(opt.weights)
|
|
opt.cfg = str(opt.cfg)
|
|
opt.data = str(opt.data)
|
|
opt.project = str(opt.project)
|
|
|
|
optimizer_id = os.getenv("COMET_OPTIMIZER_ID")
|
|
if optimizer_id is None:
|
|
with open(opt.comet_optimizer_config) as f:
|
|
optimizer_config = json.load(f)
|
|
optimizer = comet_ml.Optimizer(optimizer_config)
|
|
else:
|
|
optimizer = comet_ml.Optimizer(optimizer_id)
|
|
|
|
opt.comet_optimizer_id = optimizer.id
|
|
status = optimizer.status()
|
|
|
|
opt.comet_optimizer_objective = status["spec"]["objective"]
|
|
opt.comet_optimizer_metric = status["spec"]["metric"]
|
|
|
|
logger.info("COMET INFO: Starting Hyperparameter Sweep")
|
|
for parameter in optimizer.get_parameters():
|
|
run(parameter["parameters"], opt)
|