You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
211 lines
8.0 KiB
Python
211 lines
8.0 KiB
Python
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
|
|
|
# WARNING ⚠️ wandb is deprecated and will be removed in future release.
|
|
# See supported integrations at https://github.com/ultralytics/yolov5#integrations
|
|
|
|
import logging
|
|
import os
|
|
import sys
|
|
from contextlib import contextmanager
|
|
from pathlib import Path
|
|
|
|
from utils.general import LOGGER, colorstr
|
|
|
|
FILE = Path(__file__).resolve()
|
|
ROOT = FILE.parents[3] # YOLOv5 root directory
|
|
if str(ROOT) not in sys.path:
|
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
|
RANK = int(os.getenv("RANK", -1))
|
|
DEPRECATION_WARNING = (
|
|
f"{colorstr('wandb')}: WARNING ⚠️ wandb is deprecated and will be removed in a future release. "
|
|
f'See supported integrations at https://github.com/ultralytics/yolov5#integrations.'
|
|
)
|
|
|
|
try:
|
|
import wandb
|
|
|
|
assert hasattr(wandb, "__version__") # verify package import not local dir
|
|
LOGGER.warning(DEPRECATION_WARNING)
|
|
except (ImportError, AssertionError):
|
|
wandb = None
|
|
|
|
|
|
class WandbLogger:
|
|
"""
|
|
Log training runs, datasets, models, and predictions to Weights & Biases.
|
|
|
|
This logger sends information to W&B at wandb.ai. By default, this information includes hyperparameters, system
|
|
configuration and metrics, model metrics, and basic data metrics and analyses.
|
|
|
|
By providing additional command line arguments to train.py, datasets, models and predictions can also be logged.
|
|
|
|
For more on how this logger is used, see the Weights & Biases documentation:
|
|
https://docs.wandb.com/guides/integrations/yolov5
|
|
"""
|
|
|
|
def __init__(self, opt, run_id=None, job_type="Training"):
|
|
"""
|
|
- Initialize WandbLogger instance
|
|
- Upload dataset if opt.upload_dataset is True
|
|
- Setup training processes if job_type is 'Training'.
|
|
|
|
Arguments:
|
|
opt (namespace) -- Commandline arguments for this run
|
|
run_id (str) -- Run ID of W&B run to be resumed
|
|
job_type (str) -- To set the job_type for this run
|
|
|
|
"""
|
|
# Pre-training routine --
|
|
self.job_type = job_type
|
|
self.wandb, self.wandb_run = wandb, wandb.run if wandb else None
|
|
self.val_artifact, self.train_artifact = None, None
|
|
self.train_artifact_path, self.val_artifact_path = None, None
|
|
self.result_artifact = None
|
|
self.val_table, self.result_table = None, None
|
|
self.max_imgs_to_log = 16
|
|
self.data_dict = None
|
|
if self.wandb:
|
|
self.wandb_run = wandb.run or wandb.init(
|
|
config=opt,
|
|
resume="allow",
|
|
project="YOLOv5" if opt.project == "runs/train" else Path(opt.project).stem,
|
|
entity=opt.entity,
|
|
name=opt.name if opt.name != "exp" else None,
|
|
job_type=job_type,
|
|
id=run_id,
|
|
allow_val_change=True,
|
|
)
|
|
|
|
if self.wandb_run and self.job_type == "Training":
|
|
if isinstance(opt.data, dict):
|
|
# This means another dataset manager has already processed the dataset info (e.g. ClearML)
|
|
# and they will have stored the already processed dict in opt.data
|
|
self.data_dict = opt.data
|
|
self.setup_training(opt)
|
|
|
|
def setup_training(self, opt):
|
|
"""
|
|
Setup the necessary processes for training YOLO models:
|
|
- Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
|
|
- Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
|
|
- Setup log_dict, initialize bbox_interval.
|
|
|
|
Arguments:
|
|
opt (namespace) -- commandline arguments for this run
|
|
|
|
"""
|
|
self.log_dict, self.current_epoch = {}, 0
|
|
self.bbox_interval = opt.bbox_interval
|
|
if isinstance(opt.resume, str):
|
|
model_dir, _ = self.download_model_artifact(opt)
|
|
if model_dir:
|
|
self.weights = Path(model_dir) / "last.pt"
|
|
config = self.wandb_run.config
|
|
opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp, opt.imgsz = (
|
|
str(self.weights),
|
|
config.save_period,
|
|
config.batch_size,
|
|
config.bbox_interval,
|
|
config.epochs,
|
|
config.hyp,
|
|
config.imgsz,
|
|
)
|
|
|
|
if opt.bbox_interval == -1:
|
|
self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
|
|
if opt.evolve or opt.noplots:
|
|
self.bbox_interval = opt.bbox_interval = opt.epochs + 1 # disable bbox_interval
|
|
|
|
def log_model(self, path, opt, epoch, fitness_score, best_model=False):
|
|
"""
|
|
Log the model checkpoint as W&B artifact.
|
|
|
|
Arguments:
|
|
path (Path) -- Path of directory containing the checkpoints
|
|
opt (namespace) -- Command line arguments for this run
|
|
epoch (int) -- Current epoch number
|
|
fitness_score (float) -- fitness score for current epoch
|
|
best_model (boolean) -- Boolean representing if the current checkpoint is the best yet.
|
|
"""
|
|
model_artifact = wandb.Artifact(
|
|
f"run_{wandb.run.id}_model",
|
|
type="model",
|
|
metadata={
|
|
"original_url": str(path),
|
|
"epochs_trained": epoch + 1,
|
|
"save period": opt.save_period,
|
|
"project": opt.project,
|
|
"total_epochs": opt.epochs,
|
|
"fitness_score": fitness_score,
|
|
},
|
|
)
|
|
model_artifact.add_file(str(path / "last.pt"), name="last.pt")
|
|
wandb.log_artifact(
|
|
model_artifact,
|
|
aliases=[
|
|
"latest",
|
|
"last",
|
|
f"epoch {str(self.current_epoch)}",
|
|
"best" if best_model else "",
|
|
],
|
|
)
|
|
LOGGER.info(f"Saving model artifact on epoch {epoch + 1}")
|
|
|
|
def val_one_image(self, pred, predn, path, names, im):
|
|
"""Evaluates model prediction for a single image, returning metrics and visualizations."""
|
|
pass
|
|
|
|
def log(self, log_dict):
|
|
"""
|
|
Save the metrics to the logging dictionary.
|
|
|
|
Arguments:
|
|
log_dict (Dict) -- metrics/media to be logged in current step
|
|
"""
|
|
if self.wandb_run:
|
|
for key, value in log_dict.items():
|
|
self.log_dict[key] = value
|
|
|
|
def end_epoch(self):
|
|
"""
|
|
Commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
|
|
|
|
Arguments:
|
|
best_result (boolean): Boolean representing if the result of this evaluation is best or not
|
|
"""
|
|
if self.wandb_run:
|
|
with all_logging_disabled():
|
|
try:
|
|
wandb.log(self.log_dict)
|
|
except BaseException as e:
|
|
LOGGER.info(
|
|
f"An error occurred in wandb logger. The training will proceed without interruption. More info\n{e}"
|
|
)
|
|
self.wandb_run.finish()
|
|
self.wandb_run = None
|
|
self.log_dict = {}
|
|
|
|
def finish_run(self):
|
|
"""Log metrics if any and finish the current W&B run."""
|
|
if self.wandb_run:
|
|
if self.log_dict:
|
|
with all_logging_disabled():
|
|
wandb.log(self.log_dict)
|
|
wandb.run.finish()
|
|
LOGGER.warning(DEPRECATION_WARNING)
|
|
|
|
|
|
@contextmanager
|
|
def all_logging_disabled(highest_level=logging.CRITICAL):
|
|
"""Source - https://gist.github.com/simon-weber/7853144
|
|
A context manager that will prevent any logging messages triggered during the body from being processed.
|
|
:param highest_level: the maximum logging level in use.
|
|
This would only need to be changed if a custom level greater than CRITICAL is defined.
|
|
"""
|
|
previous_level = logging.root.manager.disable
|
|
logging.disable(highest_level)
|
|
try:
|
|
yield
|
|
finally:
|
|
logging.disable(previous_level)
|